RESIDENTIAL ENERGY CONSERVATION CODE DOCUMENTATION CHECKLIST

Florida Department of Business and Professional Regulation Simulated Performance Alternative (Performance) Method

Applications for compliance with the 2017 Florida Building Code, Energy Conservation via the residential Simulated Performance Method shall include:

- This checklist
- □ A Form R405 report that documents that the Proposed Design complies with Section R405.3 of the Florida Energy Code. This form shall include a summary page indicating home address, e-ratio and the pass or fail status along with summary areas and types of components, whether the home was simulated as a worst-case orientation, name and version of the compliance software tool, name of individual completing the compliance report (one page) and an input summary checklist that can be used for field verification (usually four pages/may be greater).
- Energy Performance Level (EPL) Display Card (one page)
- HVAC system sizing and selection based on ACCA Manual S or per exceptions provided in Section R403.7
- □ Mandatory Requirements (five pages)

Required prior to CO for the Performance Method:

- Air Barrier and Insulation Inspection Component Criteria checklist (Table R402.4.1.1 one page)
- A completed Envelope Leakage Test Report (usually one page)
- □ If Form R405 duct leakage type indicates anything other than "default leakage", then a completed Form R405 Duct Leakage Test Report (usually one page)

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Business and Professional Regulation - Residential Performance Method

Project Name:Mattamy CL Lot 135Street:3327 Pilot CirCity, State, Zip:Naples , FL , 34120Owner:Mattamy HomesDesign Location:FL, NAPLES_MUNICIPA	AL	Builder Name: Mattamy Homes Permit Office: Collier County Permit Number: Jurisdiction: 211000 County: Collier (Florida Climate Zo	one 1)
 New construction or existing Single family or multiple family Number of units, if multiple family Number of Bedrooms Is this a worst case? Conditioned floor area above grade (ft²) Conditioned floor area below grade (ft²) Windows(334.0 sqft.) Description U-Factor: Dbl, U=0.55 SHGC: SHGC=0.25 U-Factor: Dbl, U=0.33 SHGC: SHGC=0.29 U-Factor: other (see details) SHGC: other (see details) 		 9. Wall Types (2532.0 sqft.) a. Concrete Block - Int Insul, Exterior b. Frame - Wood, Adjacent c. N/A d. N/A 10. Ceiling Types (2604.0 sqft.) a. Under Attic (Vented) b. Knee Wall (Vented) c. N/A 11. Ducts a. Sup: Attic, Ret: Attic, AH: System 1 12. Cooling systems a. Central Unit 13. Heating systems a. Electric Strip Heat 	Insulation Area R=4.1 2098.00 ft ² R=11.0 434.00 ft ² R= ft ² R= ft ² Insulation Area R=30.0 2422.00 ft ² R= ft ² R= ft ² 6 384.4 kBtu/hr Efficiency 34.6 SEER:16.00 kBtu/hr Efficiency 36.0 COP:1.00
Area Weighted Average Overhang Depth:Area Weighted Average SHGC:8. Floor Types (2422.0 sqft.)	5.311 ft. 0.286 sulation Area =0.0 2422.00 ft ² = ft ²	 14. Hot water systems a. Electric b. Conservation features None 15. Credits 	Cap: 40 gallon EF: 0.950 Pstat
Glass/Floor Area: 0.138	Total Proposed Modified Total Baseline		PASS
I hereby certify that the plans and specific this calculation are in compliance with the Code. PREPARED BY: DATE:	e Florida Energy	Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes.	

- Compliance requires certification by the air handler unit manufacturer that the air handler enclosure qualifies as certified factory-sealed in accordance with R403.3.2.1.

- Compliance requires an Air Barrier and Insulation Inspection Checklist in accordance with R402.4.1.1 and this project requires an envelope leakage test report with envelope leakage no greater than 7.00 ACH50 (R402.4.1.2).

RM R405	2017	NPUT SU		PROJE						
Title: Building Typ Owner Nam # of Units: Builder Nam Permit Offic Jurisdiction: Family Type New/Existin Comment:	e: Mattamy Homes 1 ne: Mattamy Homes e: Collier County 211000 e: Single-family		Bedrooms: Conditioned Total Storie Worst Case Rotate Ang Cross Vent Whole Hou	d Area: 2 es: 7 e: 1 le: 0 ilation:	3 2422 1 No 0		Lot # Block PlatB Stree Coun	/Subdivision: ook: t: ty: State, Zip:	Street Addres 3327 Pilot Cir Collier Naples , FL , 34120	
				CLIMA	ſE					
 Г 	Design Location	TMY Site		De: 97.5	sign Temp 5 % 2.5 %		esign Temp er Summ		-	Daily Ter Range
	IAPLES_MUNICIPA FL_N		CIPA	46		70	75	288.5	58	Mediu
				BLOCK	S					
Number	Name	Area	Volume							
1	Block1	2422	24220							
				SPACE	S					
Number	Name	Area	Volume K	(itchen (Occupants	Bedroo	ms Ir	nfil ID Finish	ed Coole	ed Hea
1	System 1	2422	24220	Yes	4	3	1	Yes	Yes	Yes
				FLOOR	S					
/ #	Floor Type	Space	Perin	neter I	R-Value	Area			Tile Woo	d Carpet
1	Slab-On-Grade Edge Insula	tio Syste	m 1 253	ft	0	2422 ft ²			0.5 0	0.5
				ROOF	-					
V #	_		Roof	Gable	Roof	Rad	Solar	SA Emit		Deck Pi
V #	Туре	Materials	Area	Area	Color	Barr	Absor.	Tested	Tested	Insul. (d
1	Gable or shed	Barrel tile	2623 ft ²	504 ft ²	Medium		0.96	No 0.9	9 No	0 2
				ATTIC	;					
V #	Туре	Ventilat	ion	Vent Ratio	(1 in)	Area	RBS	IRCC		
1		Vente		300		2422 ft ²		N		
				CEILIN	G					
/ #	Ceiling Type		Space	R-Value	Ins Ty	/pe	Area	Framing F	rac Truss T	уре
1	Under Attic (Vented)		System 1	30	Blowr	 ו	2422 ft ²	0.11	Woo	d
2	Knee Wall (Vented)		System 1	30	Batt		182 ft ²	0.11	Woo	d

10

s

8

Metal Low-E Double

INPUT SUMMARY CHECKLIST REPORT

WALLS

						WA	LLS								
√ #	Ornt	Adjace To	nt Wall Type		Space	Cavity R-Value	Wid Ft	th In	H Ft	eight In	Area	Sheathing R-Value		Solar Absor.	Below Grade%
1	E	Exterior			nsul System 1	4.1	60.8	0	10	0	608.0 ft ²	0	0	0.45	0
2	Ν	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	15	0	10	0	150.0 ft ²	0	0	0.45	0
3	W	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	10	0	10	0	100.0 ft ²	0	0	0.45	0
4	Ν	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	5.4	0	10	0	54.0 ft ²	0	0	0.45	0
5	W	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	9.4	0	10	0	94.0 ft ²	0	0	0.45	0
6	Ν	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	19.8	0	10	0	198.0 ft ²	0	0	0.45	0
7	W	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	65	0	10	0	650.0 ft ²	0	0	0.45	0
8	S	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	15	0	10	0	150.0 ft ²	0	0	0.45	0
9	Е	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	5	0	10	0	50.0 ft ²	0	0	0.45	0
10	S	Exterior	Concrete	Block - Int Ir	nsul System 1	4.1	4.4	0	10	0	44.0 ft ²	0	0	0.45	0
11	Е	Garage	Frame -	Wood	System 1	11	21.2	0	10	0	212.0 ft ²	0	0.23	0.45	0
12	S	Garage	Frame -	Nood	System 1	11	2.6	0	10	0	26.0 ft ²	0	0.23	0.45	0
13	W	Garage	Frame -	Nood	System 1	11	2.6	0	10	0	26.0 ft ²	0	0.23	0.45	0
14	S	Garage	Frame -	Nood	System 1	11	17	0	10	0	170.0 ft ²	0	0.23	0.45	0
\checkmark	#	Ornt	Doc	r Type	Space			Storm	5	U-Valu	ie Ft	Width In	Height Ft	In	Area
	1	S	Insu	lated	System 1			None		.39	3.8	3	8	3	0.4 ft ²
	2	S	Insu	lated	System 1			None		.6	3		8	2	24 ft²
	3	W	Insu	llated	System 1			None		.39	2.8	3	8	2:	2.4 ft ²
				Ori	entation show		OOWS	ropose	ed ori	ientation	I.				
/		Wall										hang			
V	# C	Drnt ID	Frame	Panes	NFRC	U-Factor	SHGC	Im	р	Area	Depth	Separation	Int Sha	de S	Screening
	1	E 1	Metal Low	-E Double	Yes	0.33	0.32	Ν		18.0 ft ²	1 ft 0 in	2 ft 0 in	None	•	None
	2	E 1	Metal Low	-E Double	Yes	0.33	0.32	Ν		8.0 ft ²	1 ft 0 in	2 ft 0 in	None	•	None
	3	E 1	Metal Low	-E Double	Yes	0.31	0.31	Ν		6.0 ft ²	1 ft 0 in	2 ft 0 in	None	•	None
						0.33	0.32	N	:	36.0 ft ²	1 ft 0 in	2 ft 0 in	None		None
	4	N 2	Metal Low	-E Double	Yes	0.55	0.02								
	4 5	N 2 N 4		-E Double -E Double	Yes Yes	0.33	0.32	N		8.0 ft ²	1 ft 0 in	2 ft 0 in	None		None
			Metal Low					N N			1 ft 0 in 11 ft 0 in		None None	•	
	5	N 4	Metal Low Metal Low	-E Double	Yes	0.33	0.32		1			2 ft 0 in		•	None
	5 6 7	N 4 N 6	Metal Low Metal Low Metal Low	-E Double -E Double	Yes Yes	0.33 0.55	0.32 0.25	Ν	1	44.0 ft ²	11 ft 0 in	2 ft 0 in	None	9 9	None None

Yes

0.33

0.29

Ν

18.0 ft² 1 ft 0 in 2 ft 0 in

None

None

OR	M R405-20	17	INP	UT SUMM	ARY CH		Γ RE	PORT				
					GA	RAGE						
V	/ #	Floor Area	1	Ceiling Area	Exposed	Wall Perime	ter	Avg. Wall	Height	Exposed	Wall Insulation	on
	1	421 ft ²		421 ft ²		42 ft		10 ft			1	
					INFIL	TRATION						
#	Scope	Method	1	SLA	CFM 50	ELA	Eql	LA /	ACH	ACH 5	0	
1	Wholehouse	Proposed A	ACH(50)	.000445	2825.7	155.13	291	.74 .	1685	7		
					HEATIN	G SYSTE	М					
V	/ #	System Type		Subtype	Speed	Effi	ciency	Cap	pacity		Block	Ducts
	1	Electric Strip He	eat/	None		C	OP:1	36 k	Btu/hr		1	sys#1
					COOLIN	G SYSTE	М					
\setminus	/ #	System Type		Subtype	Subtyp	e Effic	iency	Capacity	Air Fl	ow SHF	R Block	Ducts
	1	Central Unit/		Split	Singl	SEE	R: 16	34.6 kBtu/h	ır 1038 (cfm 0.75	5 1	sys#1
					HOT WAT	ER SYST	EM					
V	/ #	System Type	SubType	Location	EF	Cap		Use	SetPnt		Conservatio	n
	1	Electric	None	Garage	0.95	40 gal	6	60 gal	120 deg		None	
				SOL	AR HOT W	VATER S	YSTE	М				
V	FSEC		Name		System Mo	del #	Col	lector Mode			Storage Volume	FEF
	None	None								ft²		
					DI	JCTS						
,	/	Sup		Ret				Air		CFM25		HVAC #
V	/ #	Location R	R-Value Area	Location	Area	Leakage T	уре	Handler	тот	OUT (QN RLF	Heat Cool
	1	Attic	6 384.4	ft Attic	121.1 ft	Default Lea	kage	System 1	(Default)	(Default)		1 1

FORM R405-2017

INPUT SUMMARY CHECKLIST REPORT

	TEMPERATURES													
Programa	Programable Thermostat: Y Ceiling Fans:													
Cooling Heating Venting	[] Jan [X] Jan [] Jan	[] Feb [X] Feb [] Feb	[] Mar [X] Mar [X] Mar	[] Apr [] Apr [X] Apr] May May] May	[X] Jun [] Jun [] Jun	[X] Jul [] Jul [] Jul	[X] Aug [] Aug [] Aug	[X] S [] S [] S	ep ep	Oct Oct [X] Oct	[] Nov [X] Nov [X] Nov	[] Dec [X] Dec [] Dec
Thermostat	Schedule:	HERS 200	6 Reference	9				Ho	urs					
Schedule T	уре		1	2	3	4	5	6	7	8	9	10	11	12
Cooling (W	D)	AM PM	78 80	78 80	78 78	78 78	78 78	78 78	78 78	78 78	80 78	80 78	80 78	80 78
Cooling (W	EH)	AM PM	78 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78
Heating (W	D)	AM PM	66 68	66 68	66 68	66 68	66 68	68 68	68 68	68 68	68 68	68 68	68 66	68 66
Heating (W	EH)	AM PM	66 68	66 68	66 68	66 68	66 68	68 68	68 68	68 68	68 68	68 68	68 66	68 66
	MASS													
Ма	ss Type			Area			Thickness	F	Furniture Fra	ction		Space		
De	fault(8 lbs/so	q.ft.		0 ft ²			0 ft		0.3			System	1	

ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE INDEX* = 94

The lower the Energy Performance Index, the more efficient the home.

 New home or, addition Single-family or multiple-family 	1. <u>New (From</u> Plans) 2. <u>Single-famil</u> y	12. Ducts, location & insulation level a) Supply ducts R6.0 b) Return ducts R6.0 c) AHU location System 1
3. No. of units (if multiple-family)	31	,
4. Number of bedrooms	43	13. Cooling system: Capacity <u>34.6</u> a) Split system SEER <u>16.0</u>
5. Is this a worst case? (yes/no)	5. <u>No</u>	b) Single package SEER c) Ground/water source SEER/COP
6. Conditioned floor area (sq. ft.)	62422	d) Room unit/PTAC EER e) Other
 7. Windows, type and area a) U-factor:(weighted average) b) Solar Heat Gain Coefficient (SHGC) c) Area 8. Skylights a) U-factor:(weighted average) b) Solar Heat Gain Coefficient (SHGC) 	7a. <u>0.424</u> 7b. <u>0.286</u> 7c. <u>334.0</u> 8a. <u>NA</u>	14. Heating system: Capacity 36.0 a) Split system heat pump HSPF b) Single package heat pump HSPF c) Electric resistance COP d) Gas furnace, natural gas AFUE e) Gas furnace, LPG AFUE
9. Floor type, insulation level:		f) Other
a) Slab-on-grade (R-value) b) Wood, raised (R-value) c) Concrete, raised (R-value)	9a. <u>0.0</u> 9b 9c	15. Water heating systemEF0.95a) Electric resistanceEFb) Gas fired, natural gasEF
 Wall type and insulation: A. Exterior: 1. Wood frame (Insulation R-value) 2. Masonry (Insulation R-value) B. Adjacent: 1. Wood frame (Insulation R-value) 2. Masonry (Insulation R-value) 	10A1 10A2. <u>4.1</u> 10B1. <u>11.0</u> 10B2	c) Gas fired, LPG EF d) Solar system with tank e) Dedicated heat pump with tank EF f) Heat recovery unit HeatRec% g) Other
 11. Ceiling type and insulation level a) Under attic b) Single assembly c) Knee walls/skylight walls d) Radiant barrier installed 	11a30.0 11b 11c30.0 11d	16. HVAC credits claimed (Performance Method) a) Ceiling fans

*Label required by Section R303.1.3 of the Florida Building Code, Energy Conservation, if not DEFAULT.

I certify that this home has complied with the Florida Building Code, Energy Conservation, through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL display card will be completed based on installed code compliant features.

Builder Signature: Kaitlin Wood	Date:12/18/2020
Address of New Home: <u>3327 Pilot Cir</u>	City/FL Zip: <u>Naples, FL 34120</u>

Florida Building Code, Energy Conservation, 6th Edition (2017) Mandatory Requirements for Residential Performance, Prescriptive and ERI Methods

ADDRESS:

3327 Pilot Cir Naples , FL , 34120 Permit Number:

MANDATORY REQUIREMENTS See individual code sections for full details.

R401.3 Energy Performance Level (EPL) display card (Mandatory). The building official shall require that an energy performance level (EPL) display card be completed and certified by the builder to be accurate and correct before final approval of the building for occupancy. Florida law (Section 553.9085, Florida Statutes) requires the EPL display card to be included as an addendum to each sales contract for both presold and nonpresold residential buildings. The EPL display card contains information indicating the energy performance level and efficiencies of components installed in a dwelling unit. The building official shall verify that the EPL display card completed and signed by the builder accurately reflects the plans and specifications submitted to demonstrate code compliance for the building. A copy of the EPL display card can be found in Appendix RD.

R402.4 Air leakage (Mandatory). The building thermal envelope shall be constructed to limit air leakage in accordance with the requirements of Sections R402.4.1 through R402.4.5.

Exception: Dwelling units of R-2 Occupancies and multiple attached single family dwellings shall be permitted to comply with Section C402.5.

R402.4.1 Building thermal envelope building thermal envelope shall comply with Sections R402.4.1.1 and R402.4.1.2. The sealing methods between dissimilar materials shall allow for differential expansion and contraction.

R402.4.1.1 Installation.The components of the building thermal envelope as listed in Table R402.4.1.1 shall be installed in accordance with the manufacturer's instructions and the criteria listed in Table R402.4.1.1, as applicable to the method of construction. Where required by the code official, an approved third party shall inspect all components and verify compliance.

R402.4.1.2 Testing. The building or dwelling unit shall be tested and verified as having an air leakage rate not exceeding seven air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 3 through 8. Testing shall be conducted in accordance with ANSI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 pascals). Testing shall be conducted by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i) or an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope.

Exception: Testing is not required for additions, alterations, renovations, or repairs, of the building thermal envelope of existing buildings in which the new construction is less than 85 percent of the building thermal envelope.

During testing:

1. Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures.

2. Dampers including exhaust, intake, makeup air, backdraft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures.

- 3. Interior doors, if installed at the time of the test, shall be open.
- 4. Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed.
- 5. Heating and cooling systems, if installed at the time of the test, shall be turned off.
- 6. Supply and return registers, if installed at the time of the test, shall be fully open.

R402.4.2 Fireplaces. New wood-burning fireplaces shall have tight-fitting flue dampers or doors, and outdoor combustion air. Where using tight-fitting doors on factory-built fireplaces listed and labeled in accordance with UL 127, the doors shall be tested and listed for the fireplace. Where using tight-fitting doors on masonry fireplaces, the doors shall be listed and labeled in accordance with UL 907.

R402.4.3 Fenestration air leakage/Vindows, skylights and sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm per square foot (1.5 L/s/m2), and swinging doors no more than 0.5 cfm per square foot (2.6 L/s/m2), when tested according to NFRC 400 or AAMA/ WDMA/CSA 101/I.S.2/A440 by an accredited, independent laboratory and listed and labeled by the manufacturer.

Exception: Site-built windows, skylights and doors.

MANDATORY REQUIREMENTS - (Continued)

R402.4.4 Rooms containing fuel-burning appliances. In Climate Zones 3 through 8, where open combustion air ducts provide combustion air to open combustion fuel burning appliances, the appliances and combustion air opening shall be located outside the building thermal envelope or enclosed in a room, isolated from inside the thermal envelope. Such rooms shall be sealed and insulated in accordance with the envelope requirements of Table R402.1.2, where the walls, floors and ceilings shall meet not less than the basement wall R-value requirement. The door into the room shall be fully gasketed and any water lines and ducts in the room insulated in accordance with Section R403. The combustion air duct shall be insulated where it passes through conditioned space to a minimum of R-8.

Exceptions:

- 1. Direct vent appliances with both intake and exhaust pipes installed continuous to the outside.
- 2. Fireplaces and stoves complying with Section R402.4.2 and Section R1006 of the Florida Building Code, Residential.

R402.4.5 Recessed lighting. Recessed luminaires installed in the building thermal envelope shall be sealed to limit air leakage between conditioned and unconditioned spaces. All recessed luminaires shall be IC-rated and labeled as having an air leakage rate not more than 2.0 cfm (0.944 L/s) when tested in accordance with ASTM E283 at a 1.57 psf (75 Pa) pressure differential. All recessed luminaires shall be sealed with a gasket or caulk between the housing and the interior wall or ceiling covering.

R403.1 Controls.

SECTION R403 SYSTEMS

R403.1.1 Thermostat provision (Mandatory). At least one thermostat shall be provided for each separate heating and cooling system.

R403.1.3 Heat pump supplementary heat (Mandatory). Heat pumps having supplementary electric-resistance heat shall have controls that, except during defrost, prevent supplemental heat operation when the heat pump compressor can meet the heating load.

R403.3.2 Sealing (Mandatory) All ducts, air handlers, filter boxes and building cavities that form the primary air containment passageways for air distribution systems shall be considered ducts or plenum chambers, shall be constructed and sealed in accordance with Section C403.2.9.2 of the Commercial Provisions of this code and shall be shown to meet duct tightness criteria below.

Duct tightness shall be verified by testing in accordance with ANSI/RESNET/ICC 380 by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i), Florida Statutes, to be "substantially leak free" in accordance with Section R403.3.3.

R403.3.2.1 Sealed air handler. Air handlers shall have a manufacturer's designation for an air leakage of no more than 2 percent of the design airflow rate when tested in accordance with ASHRAE 193.

R403.3.3 Duct testing (Mandatory). Ducts shall be pressure tested to determine air leakage by one of the following methods:

- 1. Rough-in test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the system, including the manufacturer's air handler enclosure if installed at the time of the test. All registers shall be taped or otherwise sealed during the test.
- Postconstruction test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the entire system, including the manufacturer's air handler enclosure. Registers shall be taped or otherwise sealed during the test.

Exceptions:

- 1. A duct air leakage test shall not be required where the ducts and air handlers are located entirely within the building thermal envelope.
- 2. Duct testing is not mandatory for buildings complying by Section 405 of this code.

A written report of the results of the test shall be signed by the party conducting the test and provided to the code official.

R403.3.5 Building cavities (Mandatory). Building framing cavities shall not be used as ducts or plenums.

R403.4 Mechanical system piping insulation (Mandatory). Mechanical system piping capable of carrying fluids above 105°F (41°C) or below 55°F (13°C) shall be insulated to a minimum of R-3.

R403.4.1 Protection of piping insulation. Piping insulation exposed to weather shall be protected from damage, including that caused by sunlight, moisture, equipment maintenance and wind, and shall provide shielding from solar radiation that can cause degradation of the material. Adhesive tape shall not be permitted.

R403.5.1 Heated water circulation and temperature maintenance systems (Mandatory)Heated water circulation systems shall be in accordance with Section R403.5.1.1. Heat trace temperature maintenance systems shall be in accordance with Section R403.5.1.2. Automatic controls, temperature sensors and pumps shall be accessible. Manual controls shall be readily accessible.

R403.5.1.1 Circulation systems. Heated water circulation systems shall be provided with a circulation pump. The system return pipe shall be a dedicated return pipe or a cold water supply pipe. Gravity and thermosiphon circulation systems shall be prohibited. Controls for circulating hot water system pumps shall start the pump based on the identification of a demand for hot water within the occupancy. The controls shall automatically turn off the pump when the water in the circulation loop is at the desired temperature and when there is no demand for hot water.

R403.5.1.2 Heat trace systems. Electric heat trace systems shall comply with IEEE 515.1 or UL 515. Controls for such systems shall automatically adjust the energy input to the heat tracing to maintain the desired water temperature in the piping in accordance with the times when heated water is used in the occupancy.

MANDATORY REQUIREMENTS - (Continued)

heat traps installed on both the inl	ets and outlets. External heat traps s	ed with integral heat traps and having hall consist of either a commercially av water distribution line and cold water lir	ailable heat trap or a					
R403.5.6 Water heater efficienci	es (Mandatory).							
		ystems shall be equipped with automa berature settings for the intended use.						
R403.5.6.1.2 Shut down. A separate switch or a clearly marked circuit breaker shall be provided to permit the power supplied to electric service systems to be turned off. A separate valve shall be provided to permit the energy supplied to the main burner(s) of combustion types of service water-heating systems to be turned off.								
Equipment used to prov	r 4 of the Florida Building Code, Ene	ipment installed in residential units sha rgy Conservation, Commercial Provision nbination system shall satisfy all stated riteria of Section R403.5.6.2.1.	ons, for the type of equipment installed					
factor of the syste Certified Solar Sy and SRCC Standa	m. The solar energy factor of a syste stems. Solar collectors shall be teste	tems for domestic hot water productio or shall be determined from the Florida d in accordance with ISO Standard 98 System and Component Test Protocol ia:	a Solar Energy Center Directory of 06, Test Methods for Solar Collectors,					
	with a tilt angle between 10 degrees at an orientation within 45 degrees of	and 40 degrees of the horizontal; and of true south.						
R403.6 Mechanical ventilation (Mandatory). The building shall be provided with ventilation that meets the requirements of the Florida Building Code, Residential, or Florida Building Code, Mechanical, as applicable, or with other approved means of ventilation including: Natural, Infiltration or Mechanical means. Outdoor air intakes and exhausts shall have automatic or gravity dampers that close when the ventilation system is not operating.								
	chanical ventilation system fan eff Il meet the efficacy requirements of 7	icacy. When installed to function as a Fable R403.6.1.	whole-house mechanical					
powered by an elec	tronically commutated motor.	fans are integral to tested and listed H						
shall meet the following crite	eria:	operated at a positive indoor pressure						
	ange per hour minimums for resident , shall be the maximum rates allowed	ial buildings in ASHRAE 62.2, Ventilati I for residential applications.	on for Acceptable					
		hall be provided to conditioned space baces adjacent to swimming pools or s						
		the walls of the space(s) from which a e insulated to a minimum of R-19, space						
based on building load indoor units (if split sy described in Section F affect equipment sizin as standard kitchen a rating equal to or grea	ng. Heating and cooling equipr ulated in accordance with ACCA Man ds for the directional orientation of the stem) shall be submitted along with t 302.1. This Code does not allow des g. System sizing calculations shall no nd bathroom exhaust systems. New ter than the minimum required by fee TABLE R403.	nent shall be sized in accordance with nual J or other approved heating and co e building. The manufacturer and mode the sensible and total cooling capacitie signer safety factors, provisions for futu ot include loads created by local interm or replacement heating and cooling eq deral law for the geographic location wi 6.1 ENTILATION SYSTEM FAN EFFIC	boling calculation methodologies, el number of the outdoor and s at the design conditions irre expansion or other factors that littent mechanical ventilation such upment shall have an efficiency here the equipment is installed.					
		·						
FAN LOCATION	AIRFLOW RATE MINIMUM (CFM)	MINIMUM EFFICACY ^a (CFM/WATT)	AIRFLOW RATE MAXIMUM (CFM)					
Range hoods	Any	2.8 cfm/watt	Any					
In-line fan	Any	2.8 cfm/watt	Any					

For SI: 1 cfm = 28.3 L/min.

Bathroom, utility room

Bathroom, utility room

1.4 cfm/watt

2.8 cfm/watt

12/17/2020 10:26 PM EnergyGauge® USA 6.0.02 (Rev. 1) - FlaRes2017 FBC 6th Edition (2017) Compliant Software

10

90

a.

<90

Any

MANDATORY REQUIREMENTS - (Continued)

R403.7.1.1 Cooling equipment capacity. Cooling only equipment shall be selected so that its total capacity is not less than the calculated total load but not more than 1.15 times greater than the total load calculated according to the procedure selected in Section 403.7, or the closest available size provided by the manufacturer's product lines. The corresponding latent capacity of the equipment shall not be less than the calculated latent load.

The published value for AHRI total capacity is a nominal, rating-test value and shall not be used for equipment sizing. Manufacturer's expanded performance data shall be used to select cooling-only equipment. This selection shall be based on the outdoor design dry-bulb temperature for the load calculation (or entering water temperature for water-source equipment), the blower CFM provided by the expanded performance data, the design value for entering wet-bulb temperature and the design value for entering dry-bulb temperature.

Design values for entering wet-bulb and dry-bulb temperatures shall be for the indoor dry bulb and relative humidity used for the load calculation and shall be adjusted for return side gains if the return duct(s) is installed in an unconditioned space.

Exceptions:

- Attached single- and multiple-family residential equipment sizing may be selected so that its cooling capacity is less than the calculated total sensible load but not less than 80 percent of that load.
- When signed and sealed by a Florida-registered engineer, in attached single- and multiple-family units, the capacity of equipment may be sized in accordance with good design practice.

R403.7.1.2 Heating equipment capacity.

R403.7.1.2.1 Heat pumps. Heat pump sizing shall be based on the cooling requirements as calculated according to Section R403.7.1.1, and the heat pump total cooling capacity shall not be more than 1.15 times greater than the design cooling load even if the design heating load is 1.15 times greater than the design cooling load.

R403.7.1.2.2 Electric resistance furnaces. Electric resistance furnaces shall be sized within 4 kW of the design requirements calculated according to the procedure selected in Section R403.7.1.

R403.7.1.2.3 Fossil fuel heating equipment. The capacity of fossil fuel heating equipment with natural draft atmospheric burners shall not be less than the design load calculated in accordance with Section R403.7.1.

R403.7.1.3 Extra capacity required for special occasions. Residences requiring excess cooling or heating equipment capacity on an intermittent basis, such as anticipated additional loads caused by major entertainment events, shall have equipment sized or controlled to prevent continuous space cooling or heating within that space by one or more of the following options:

- 1. A separate cooling or heating system is utilized to provide cooling or heating to the major entertainment areas.
- 2. A variable capacity system sized for optimum performance during base load periods is utilized.

R403.8 Systems serving multiple dwelling units (Mandatory). Systems serving multiple dwelling units shall comply with Sections C403 and C404 of the IECC—Commercial Provisions in lieu of Section R403.

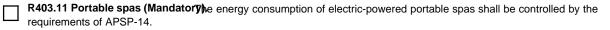
R403.9 Snow melt and ice system controls (Mandatory) Snow- and ice-melting systems, supplied through energy service to the building, shall include automatic controls capable of shutting off the system when the pavement temperature is above 50°F (10°C), and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F (4.8°C).

R403.10 Pools and permanent spa energy consumption (Mandatory). shall be in accordance with Sections R403.10.1 through R403.10.5. The energy consumption of pools and permanent spas

R403.10.1 Heaters. The electric power to heaters shall be controlled by a readily accessible on-off switch that is an integral part of the heater mounted on the exterior of the heater, or external to and within 3 feet (914 mm) of the heater. Operation of such switch shall not change the setting of the heater thermostat. Such switches shall be in addition to a circuit breaker for the power to the heater. Gas-fired heaters shall not be equipped with continuously burning ignition pilots.

R403.10.2 Time switches. Time switches or other control methods that can automatically turn off and on according to a preset schedule shall be installed for heaters and pump motors. Heaters and pump motors that have built-in time switches shall be in compliance with this section.

Exceptions:


- 1. Where public health standards require 24-hour pump operation.
- 2. Pumps that operate solar- and waste-heat-recovery pool heating systems.
- 3. Where pumps are powered exclusively from on-site renewable generation.

R403.10.3 Covers. Outdoor heated swimming pools and outdoor permanent spas shall be equipped with a vapor-retardant cover on or at the water surface or a liquid cover or other means proven to reduce heat loss.

Exception: Where more than 70 percent of the energy for heating, computed over an operation season, is from site-recovered energy, such as from a heat pump or solar energy source, covers or other vapor-retardant means shall not be required.

R403.10.4 Gas- and oil-fired pool and spa heaters. All gas- and oil-fired pool and spa heaters shall have a minimum thermal efficiency of 82 percent for heaters manufactured on or after April 16, 2013, when tested in accordance with ANSI Z 21.56. Pool heaters fired by natural or LP gas shall not have continuously burning pilot lights.

R403.10.5 Heat pump pool heaters. Heat pump pool heaters shall have a minimum COP of 4.0 when tested in accordance with AHRI 1160, Table 2, Standard Rating Conditions-Low Air Temperature. A test report from an independent laboratory is required to verify procedure compliance. Geothermal swimming pool heat pumps are not required to meet this standard.

SECTION R404

ELECTRICAL POWER AND LIGHTING SYSTEMS

 \square

R404.1 Lighting equipment (Mandatory). Not less than 75 percent of the lamps in permanently installed lighting fixtures shall be high-efficacy lamps or not less than 75 percent of the permanently installed lighting fixtures shall contain only high-efficacy lamps. Exception: Low-voltage lighting.

R404.1.1 Lighting equipment (Mandatory)Fuel gas lighting systems shall not have continuously burning pilot lights.

2017 - AIR BARRIER AND INSULATION INSPECTION COMPONENT CRITERIA

TABLE 402.4.1.1 AIR BARRIER AND INSULATION INSPECTION COMPONENT CRITERIA

Project Name: Street:	Mattamy CL Lot 135 3327 Pilot Cir	Builder Name: Mattamy Homes Permit Office: Collier County
City, State, Zip: Owner: Design Location:	Naples , FL , 34120 Mattamy Homes FL, NAPLES_MUNICIPAL	Permit Number: Jurisdiction: 211000
COMPONENT	AIR BARRIER CRITERIA	INSULATION INSTALLATION CRITERIA
General requirements	A continuous air barrier shall be installed in the building The exterior thermal envelope contains a continuous air Breaks or joints in the air barrier shall be sealed.	
Ceiling/attic	The air barrier in any dropped ceiling/soffit shall be align the insulation and any gaps in the air barrier shall be see Access openings, drop down stairs or knee wall doors to unconditioned attic spaces shall be sealed.	aled. shall be aligned with the air barrier.
Walls	The junction of the foundation and sill plate shall be sea The junction of the top plate and the top of exterior walls sealed. Knee walls shall be sealed.	
Windows, skylights and doors	The space between window/door jambs and framing, an skylights and framing shall be sealed.	d
Rim joists	Rim joists shall include the air barrier.	Rim joists shall be insulated.
Floors (including above-garage and cantilevered floors)	The air barrier shall be installed at any exposed edge of insulation.	Floor framing cavity insulation shall be installed to maintain permanent contact with the underside of subfloor decking, or floor framing cavity insulation shall be permitted to be in contact with the top side of sheathing, or continuous insulation installed on the underside of floor framing and extends from the bottom to the top of all perimeter floor framing members.
Crawl space walls	Exposed earth in unvented crawl spaces shall be covere a Class I vapor retarder with overlapping joints taped.	ed with Where provided instead of floor insulation, insulation shall be permanently attached to the crawlspace
Shafts, penetrations	Duct shafts, utility penetrations, and flue shafts opening exterior or unconditioned space shall be sealed.	to
Narrow cavities		Batts in narrow cavities shall be cut to fit, or narrow cavities shall be filled by insulation that on installation readily conforms to the available cavity spaces.
Garage separation	Air sealing shall be provided between the garage and co	nditioned spaces.
Recessed lighting	Recessed light fixtures installed in the building thermal e shall be sealed to the drywall.	envelope Recessed light fixtures installed in the building thermal envelope shall be air tight and IC rated.
Plumbing and wiring		Batt insulation shall be cut neatly to fit around wiring and plumbing in exterior walls, or insulation that on installation readily conforms to available space shall extend behind piping and wiring.
Shower/tub on exterior wall	The air barrier installed at exterior walls adjacent to show tubs shall separate them from the showers and tubs.	
Electrical/phone box of exterior walls	The air barrier shall be installed behind electrical or com boxes or air-sealed boxes shall be installed.	munication
HVAC register boots	HVAC register boots that penetrate building thermal environment be sealed to the sub-floor or drywall.	elope shall
Concealed sprinklers	When required to be sealed, concealed fire sprinklers sealed in a manner that is recommended by the manufa Caulking or other adhesive sealants shall not be used to between fire sprinkler cover plates and walls or ceilings.	cturer. fill voids

Envelope Leakage Test Report (Blower Door Test)

Residential Prescriptive, Performance or ERI Method Compliance 2017 Florida Building Code, Energy Conservation, 6th Edition

	Jurisdiction: 211000	Permit #:
Jol	o Information	
Bui	Ider: Mattamy Homes Community:	Lot: NA
Ado	dress: 3327 Pilot Cir	
City	y: Naples Sta	ate: FL Zip: 34120
Ai	r Leakage Test Results Passing results must me	et either the Performance, Prescriptive, or ERI Method
	changes per hour at a pressure of 0.2 inch w.g. (50 Pascals) in (PERFORMANCE or ERI METHOD-The building or dwelling unit	shall be tested and verified as having an air leakage rate of not exceeding
the	ACH(50) specified on Form R405-2017 (Performance) ACH(50) specified on Form R405-2017-Energy	ace) or R406-2017 (ERI), section labeled as infiltration, sub-section ACH50. Calc (Performance) or R406-2017 (ERI): 7.000
Te: 489 pro Du 1. l	sting shall be conducted by either individuals as defined in Section 55 9.105(3)(f), (g), or (i) or an approved third party. A written report of th by ded to the <i>code official</i> . Testing shall be performed at any time afte ring testing:	SI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 Pascals) 53.993(5) or (7), <i>Florida Statues</i> .or individuals licensed as set forth in Section e results of the test shall be signed by the party conducting the test and
me 3. 4. 5.	Dampers including exhaust, intake, makeup air, back draft and flue d asures. Interior doors, if installed at the time of the test, shall be open. Exterior doors for continuous ventilation systems and heat recovery v Heating and cooling systems, if installed at the time of the test, shall Supply and return registers, if installed at the time of the test, shall be	be turned off.
Т	esting Company	
11	ompany Name:	•
S	ignature of Tester:	Date of Test:
Ρ	rinted Name of Tester:	
Li	cense/Certification #:	Issuing Authority:

Mattamy CL Lot 135 HVAC Load Calculations

for

Mattamy Homes 3327 Pilot Cir Naples FL 34120

Prepared By:

Ryan Cunningham Edmonson Electric

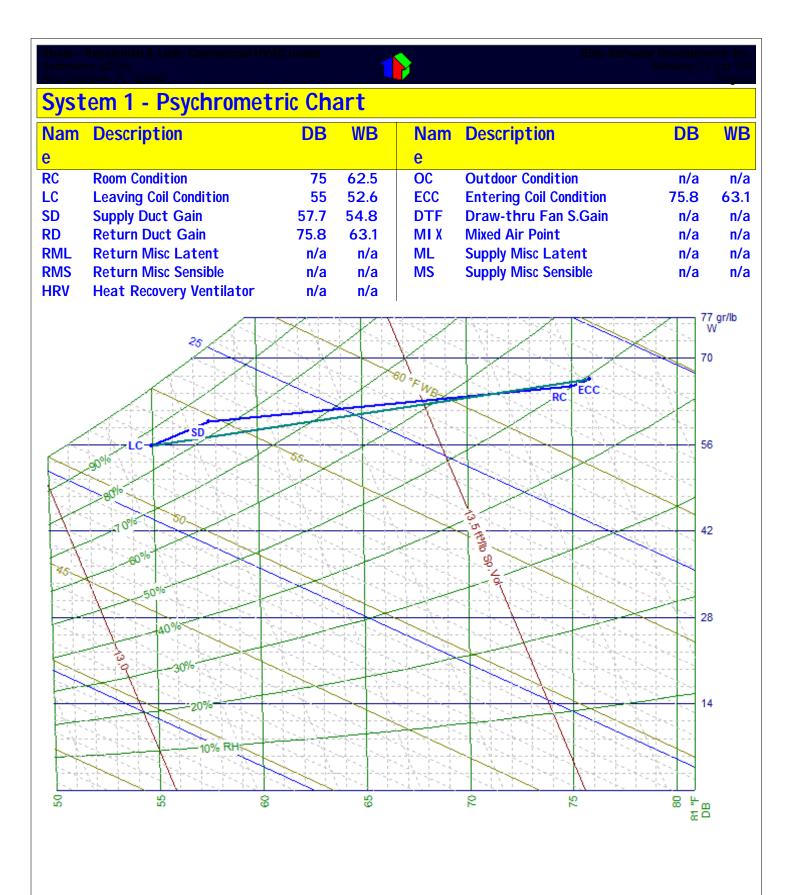
Thursday, December 17, 2020

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Project Re	port								
General Proje	ct I nforn	nation							
Project Title: Designed By:		Mattamy C Ryan Cunnii	ngham						
Project Date:		· · · · · ·	December 17,	2020					
Client Name: Client Address:		-	attamy Homes 327 Pilot Cir						
Client City:			aples FL 34120						
Company Name:		Edmonson E							
Company Repres	e ntativ e:	Ryan Cunnii	ngham						
Design Data									
Reference City:				Myers A					
Building Orienta				t door fa	es S	South			
Daily Temperatu Latitude:	ire Range:		Medi						
Elevation:			26 Degr 15 ft.	ees					
Altitude Factor:			0.999						
	Outdoor	Outdoor	Outdoor	l ndoo	r	I ndoor	Grains		
	Dry Bulb	Wet Bulb	Rel.Hum	Rel.Hun	<u>n</u>	Dry Bulb	<u>Differenc</u>		
Winter:	47	44.1	n/a	n/a	a	70	<u>e</u> n/a		
Summer:	93	77	49%	50%		75	50		
Check Figure	S								
Total Building Su	upply CFM:		1,13	BO CFM	Per	Square ft.	:	0.466	
Square ft. of Roo	om Area:		2,42		re f	t. Per Ton:		842	
Volume (ft ³):			24,22	20					
Building Load									
Total Heating R		uding Ventila	ation Air:			Btuh	27.981		
Total Sensible G						Btuh	75		
Total Latent Ga						Btuh	25		
Total Cooling Required I ncluding Ventilation Air:			34,4	85	Btuh		Tons (Based On Sensible + Latent)		
							2.88	Tons (Based On 75% Sensible	
								Capacity)	
Notes									
Rhvac is an ACC	A approved I		· · · · · · · · · · · · · · · · · · ·						

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.


Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Load Preview Report

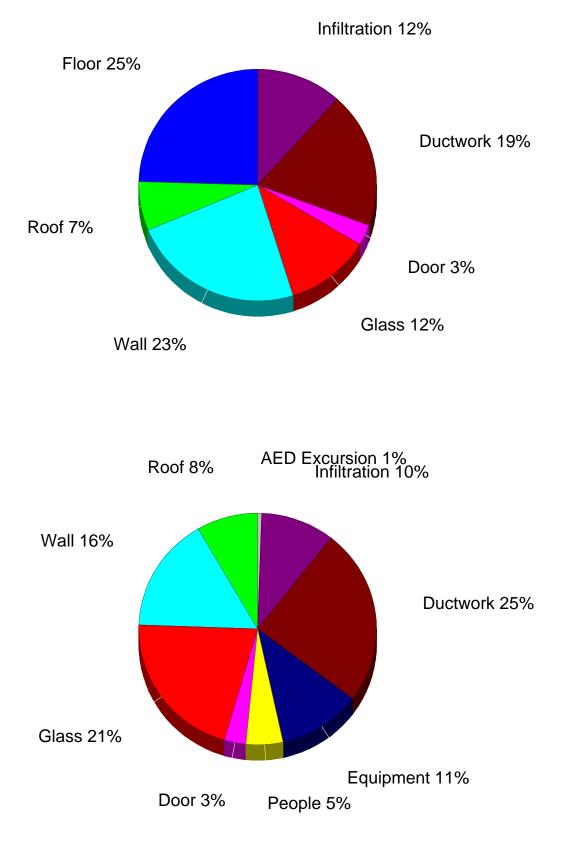
Has	Net	Rec	ft.²		Sen	Lat	Net	Sen	Min		Sys	Sys	Sys	Duct
AED	Ton	Ton	/Ton	Area	Gain	Gain	Gain		HTO	Cig CFM	Htg CFM	Cig CFM	Act CFM	Size
	2.87	2.88	842	2,422	25,894	8,590	34,485	27,981	347	1,130	347	1,130	1,130	
No	2.87	2.88	842	2,422	25,894	8,590	34,485	27,981	347	1,130	347	1,130	1,130	12x17
nt						3,136	3,136							
					1,055	988	2,042	1,274						
				2,422	24,840	4,467	29,307	26,708	347	1,130	347	1,130	1,130	12x17
				2,422	24,840	4,467	29,307	26,708	347	1,130	347	1,130	1,130	117
	AED	AED Ton 2.87 No 2.87	AED Ton Ton 2.87 2.88 2.88 No 2.87 2.88	AED Ton Ton /Ton 2.87 2.88 842 No 2.87 2.88 842	AED Ton Ton /Ton Area 2.87 2.88 842 2,422 No 2.87 2.88 842 2,422	AED Ton Ton /Ton Area Gain Image: AED 2.87 2.88 842 2,422 25,894 Image: AED 2.87 2.88 842 2,422 25,894 Image: AED 2.87 2.88 842 2,422 25,894 Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED Image: AED	AED Ton Ton /Ton Area Gain Gain Image: AED 2.87 2.88 842 2,422 25,894 8,590 Image: AED 2.87 2.88 842 2,422 25,894 8,590 Image: AED 2.87 2.88 842 2,422 25,894 8,590 Image: AED Image: AED Image: AED Image: AED 3,136 Image: AED Image: AED Image: AED Image: AED 1,055 988 Image: AED Image: AED Image: AED Image: AED 2,422 24,840 4,467	AED Ton Ton Area Gain Gain Gain Image: AED Constraints Constraints <t< td=""><td>AED Ton Ton Area Gain Gain Gain Loss Image: AED Ton Ton /Ton Area Gain Gain Gain Loss Image: AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.88 2.422 24,840 3,136 2,042 1,274 Image: AED 2.88 2.422 24,840 4,467 29,307 26,708</td><td>Has AED Net Ton Rec Ton ft.2 /Ton Area Sen Gain Lat Gain Net Gain Sen Loss Htg CFM No 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 No 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 nt 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 nt 3,136 3,136 1,274 1,274 int 2,422 24,840 4,467 29,307 26,708 347</td><td>Has AED Net Ton Rec Ton ft.2 /Ton Area Sen Gain Lat Gain Net Gain Sen Loss Htg CFM Clg CFM AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 1,130 No 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 1,130 nt 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 1,130 nt 7.98 8,42 2,422 25,894 8,590 34,485 27,981 347 1,130 nt 7.98 8,136 3,136 t 7.98 2,042 1,055 988 2,042 1,274 t 2,422 24,840 4,467 29,307<</td><td>Has AED Net Ton Rec Ton ft.2 /Ton Area Sen Gain Lat Gain Net Gain Sen Lat Gain Htg Loss Clg CFM Htg CFM Sen CFM Htg CFM Sen CFM Htg CFM Sen CFM Sen CFM</td><td>Has Net Net Net Net Net Net Net Net Sen Lat Gain Gain Sen Lat Sen Lat Lat Gain Sen Lat Lat Sen Sen Lat Lat Sen Lat Lat Sen Sen Lat Lat Sen Lat Lat Sen Lat Lat Sen Lat Lat Sen Sen Lat Las Sen Lat Lat<</td><td>Has Net Net</td></t<>	AED Ton Ton Area Gain Gain Gain Loss Image: AED Ton Ton /Ton Area Gain Gain Gain Loss Image: AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.88 842 2,422 25,894 8,590 34,485 27,981 Image: AED 2.88 2.422 24,840 3,136 2,042 1,274 Image: AED 2.88 2.422 24,840 4,467 29,307 26,708	Has AED Net Ton Rec Ton ft.2 /Ton Area Sen Gain Lat Gain Net Gain Sen Loss Htg CFM No 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 No 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 nt 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 nt 3,136 3,136 1,274 1,274 int 2,422 24,840 4,467 29,307 26,708 347	Has AED Net Ton Rec Ton ft.2 /Ton Area Sen Gain Lat Gain Net Gain Sen Loss Htg CFM Clg CFM AED 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 1,130 No 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 1,130 nt 2.87 2.88 842 2,422 25,894 8,590 34,485 27,981 347 1,130 nt 7.98 8,42 2,422 25,894 8,590 34,485 27,981 347 1,130 nt 7.98 8,136 3,136 t 7.98 2,042 1,055 988 2,042 1,274 t 2,422 24,840 4,467 29,307<	Has AED Net Ton Rec Ton ft.2 /Ton Area Sen Gain Lat Gain Net Gain Sen Lat Gain Htg Loss Clg CFM Htg CFM Sen CFM Htg CFM Sen CFM Htg CFM Sen CFM Sen CFM	Has Net Net Net Net Net Net Net Net Sen Lat Gain Gain Sen Lat Sen Lat Lat Gain Sen Lat Lat Sen Sen Lat Lat Sen Lat Lat Sen Sen Lat Lat Sen Lat Lat Sen Lat Lat Sen Lat Lat Sen Sen Lat Las Sen Lat Lat<	Has Net Net

Duct Size Preview

Room or Duct Name	Source	Minimum Velocit	Maximun Velocit			SP Loss	Duct Velocity	Htg Flow	Clg Flow	Act. Flow	Duct Size	Reg Size
System 1												
Supply Runouts												
Zone 1												
1-Entire House	Built-In	0	750	0.01	0.1		384.3	347	1,130	1,130	117	
Other Ducts in System												
Supply Main Trunk	Built-In	0	900	0.003	0.1		797.4	347	1,130	1,130	12x17	
				Sur	nmary							
System 1												
Heating Flow:	347											
Cooling Flow:	130											

Total Building Summary Loads

Total Duliulity Summary Loaus					
Component	Area	Sen	Lat	Sen	Total
Description	Quan	Loss	Gain	Gain	Gain
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.33, SHGC 0.32	142	1,081	0	4,159	4,159
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.31, SHGC 0.31	14	100	0	49 5	495
2A-b-d: Glazing-Double pane low-e (e = 0.60), sliding glass door, metal frame with break, U-value 0.55, SHGC 0.25	144	1,822	0	2,187	2,187
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.33, SHGC 0.29	34	259	0	411	411
11D: Door-Wood - Solid Core, U-value 0.39	52.8	474	0	597	597
11J: Door-Metal - Fiberglass Core, U-value 0.6	24	331	0	418	418
13A-4ocs: Wall-Block, board insulation only, R-4 board insulation, open core, siding finish, U-value 0.143	1717.6		0	4,494	4,494
12B-Osw: Wall-Frame, R-11 insulation in 2 x 4 stud cavity, no board insulation, siding finish, wood studs, U-value 0.097	403.6	900	0	1,060	1,060
16D-30: Roof/Ceiling-Under Attic with I nsulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Tile, Slate or Concrete, R-30 insulation, U-value 0.032	2422	1,783	0	2,558	2,558
KN-30: Roof/Ceiling-	182	134	0	322	322
22A-pm: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, heavy dry or light wet soil, U-value 1.18	253	6,866	0	0	0
Subtotals for structure:		19,399	0	16,701	16,701
People:	4		800	920	1,720
Equipment:			1,487	2,400	3,887
Lighting:	0			0	0
Ductwork:		5,316	4,123		8,525
I nfiltration: Winter CFM: 129, Summer CFM: 65		3,266	2,180		3,458
Ventilation: Winter CFM: 0, Summer CFM: 0		0	0	0	0
AED Excursion: Total Building Load Totals:		0 27,981	0 8,590	193 25,894	193 34,485
Check Figures		,	-,	- ,	
Total Building Supply CFM: 1,130	CEM Per 9	Square ft.:			0.466
Square ft. of Room Area: $2,422$ Volume (ft ³): $24,220$	Square ft				842
Building Loads					
Total Heating Required I ncluding Ventilation Air:	27,981	Btuh	27.981	MBH	
Total Sensible Gain:	25,894	Btuh	75	%	
Total Latent Gain:	8,590	Btuh	25	%	


Rhvac - Residential & Light Commercial HVAC Loads Seabreeze AC Inc Port Charlotte, FL 33953	1	Elite S	oftware Development, Inc. Mattamy CL Lot 135 Page 7
Total Building Summary Loads (cont'd)		
Building Loads			
Total Cooling Required I ncluding Ventilation Air:	34,485	Btuh 2.87	Tons (Based On Sensible + Latent)
		2.88	Tons (Based On
			75% Sensible
			Capacity)
Notes			

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

System 1 Summary Loads

Component	Area	Sen	Lat	Sen	Total
Description	Quan	Loss	Gain	Gain	Gain
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.33, SHGC 0.32	142	1,081	0	4,159	4,159
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.31, SHGC 0.31	14	100	0	495	49 5
2A-b-d: Glazing-Double pane low-e (e = 0.60), sliding glass door, metal frame with break, U-value 0.55, SHGC 0.25	144	1,822	0	2,187	2,187
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.33, SHGC 0.29	34	259	0	411	411
11D: Door-Wood - Solid Core, U-value 0.39	52.8	474	0	597	597
11J: Door-Metal - Fiberglass Core, U-value 0.6	24	331	0	418	418
13A-4ocs: Wall-Block, board insulation only, R-4 board insulation, open core, siding finish, U-value 0.143	1717.6	5,6 49	0	4,494	4,494
12B-Osw: Wall-Frame, R-11 insulation in 2 x 4 stud cavity, no board insulation, siding finish, wood studs, U-value 0.097	403.6	900	0	1,060	1,060
16D-30: Roof/Ceiling-Under Attic with I nsulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Tile, Slate or Concrete, R-30 insulation, U-value 0.032	2422	1,783	0	2,558	2,558
KN-30: Roof/Ceiling-	182	134	0	322	322
22A-pm: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, heavy dry or light wet soil, U-value 1.18	253	6,866	0	0	0
Subtotals for structure:		19,399	0	16,701	16,701
People:	4		800	920	1,720
Equipment:			1,487	2,400	3,887
Lighting:	0			0	0
Ductwork:		5,316	4,123		8,525
I nfiltration: Winter CFM: 129, Summer CFM: 65		3,266	2,180	· · · · ·	3,458
Ventilation: Winter CFM: 0, Summer CFM: 0 AED Excursion:		0	0	0 193	0 193
System 1 Load Totals:		27,981	8,590	25,894	34,485
Check Figures					
Supply CFM: 1,130		Square ft.:			0.466
Square ft. of Room Area: 2,422 Volume (ft ³): 24,220	Square ft	. Per Ton:			842
System Loads					
Total Heating Required I ncluding Ventilation Air:	27,981	Btuh	27.981	MBH	
Total Sensible Gain:	25,894		75		
Total Latent Gain:	8,5 <mark>90</mark>	Btuh	25	%	

1	Elite S	Software Development, Inc. Mattamy CL Lot 135 Page 10
)		
34,485 Btuh	2.87	Tons (Based On Sensible + Latent)
	2.88	Tons (Based On 75% Sensible Capacity)
	34,485 Btuh	34,485 Btuh 2.87

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Equipment Data - System 1

Cooling

System Type:
Outdoor Model:
I ndoor Model:
Tradename:
Outdoor Manufacturer:
AHRI Reference No.:
Nominal Capacity:
Adjusted Capacity:
Adjusted Sensible Capacity:
Adjusted Latent Capacity:
Efficiency:

Standard Air Conditioner ML14XC1036-230A** CBA27UHE-036-230*+TDR MERI T 14ACX SERI ES LENNOX 10259423 34,600 34600 25950 8650 16 SEER

Heating

System Type: Model: Manufacturer: Capacity: Efficiency: Electric Resistance Lennox 30,000 0%

This system's equipment was selected in accordance with ACCA Manual S.

Manual S equipment sizing data: SODB: 93F, SOWB: 77F, WODB: 47F, SI DB: 75F, SI RH: 50%, WI DB: 70F, Sen. gain: 25,894 Btuh, Lat. gain: 8,590 Btuh, Sen. loss: 27,981 Btuh, Entering clg. coil DB: 75.9F, Entering clg. coil WB: 62.8F, Entering htg. coil DB: 66.7F, Clg. coil TD: 20F, Htg. coil TD: 70F, Req. clg. airflow: 1130 CFM, Req. htg. airflow: 347 CFM

Manual S Performance Data - System 1

Loads and Design Conditions

Cooling:				
Outdoor Dry Bulb:	93	Sensible Gain:	25.894	
Outdoor Wet Bulb:	77	Latent Gain:	8.590	
I ndoor Dry Bulb:	75	Total Gain:	34.485	
I ndoor RH:	50	Load SHR:	0.75	
Supply Airflow:	1,267	Entering Dry Bulb:	76.4	
		Entering Wet Bulb:	63	
Heating:				
Outdoor Dry Bulb:	47	Sensible Loss:	27.981	
I ndoor Dry Bulb:	70	Entering Dry Bulb:	66.7	
I ndoor RH:	30	Supply Airflow:	347	

Equipment Performance Data at System Design Conditions

This system's equipment was selected in accordance with ACCA Manual S.

Cooling:

Model Type: Standard Air Conditioner, Outdoor Model: ML14XC1036-230A**, I ndoor Model: CBA27UHE-036-230*+TDR

, AHRI Reference Number: 10259423Nominal Capacity: 34.600, Manufacturer: LENNOX

Entered I nterpolation Data:

EWD			Total			EDB 6.4 °F
EWB °F	Air Flow ODB Capacity CFM °F MBtuh	l nput kW	S/T	Sensible Capacity MBtuh		
63	1267	93	34.6	0	0.75	25.95

I nterpolation Results:

			Percent
		Load	<u>of Load</u>
Sensible Capacity:	25.950	25.894	100%
Latent Capacity:	8.650	8.590	101%
Total Capacity:	34.600	34.485	100%

Heating:

Doculter

Model Type: Electric Resistance, Model: Lennox, Nominal Capacity: 30.000, Manufacturer: Lennox

Results.			
			Percent
		Load	of Load
Heating Capacity:	30.000	27.981	107%

System 1, Zone 1 Summary Loads (Average Load Procedure for Rooms)

RUUIIIS <i>)</i>					
Component	Area	Sen	Lat	Sen	Total
Description	Quan	Loss	Gain	Gain	Gain
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.33, SHGC 0.32	142	1,081	0	4,159	4,159
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.31, SHGC 0.31	14	100	0	495	495
2A-b-d: Glazing-Double pane low-e (e = 0.60), sliding glass door, metal frame with break, U-value 0.55, SHGC 0.25	144	1,822	0	2,187	2,187
2A-v-o: Glazing-Double pane low-e (e = 0.60), operable window, vinyl frame, U-value 0.33, SHGC 0.29	34	34 259 0			
11D: Door-Wood - Solid Core, U-value 0.39	52.8	474	0	597	597
11J: Door-Metal - Fiberglass Core, U-value 0.6	24	331	0	418	418
13A-4ocs: Wall-Block, board insulation only, R-4 board insulation, open core, siding finish, U-value 0.143	1717.6	5,649	0	4,494	4,494
12B-Osw: Wall-Frame, R-11 insulation in 2 x 4 stud cavity, no board insulation, siding finish, wood studs, U-value 0.097	403.6	900	0	1,060	1,060
16D-30: Roof/Ceiling-Under Attic with I nsulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Tile, Slate or Concrete, R-30 insulation, U-value 0.032	2422	1,783	0	2,558	2,558
KN-30: Roof/Ceiling-	182	134	0	322	322
22A-pm: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, heavy dry or light wet soil, U-value 1.18	253	6,866	0	0	0
Subtotals for structure:		19,399	0	16,701	16,701
People:	4		800	920	1,720
Equipment:			1,487	2,400	3,887
Lighting:	0			0	0
Ductwork:		4,043	0	3,347	3,347
I nfiltration: Winter CFM: 129, Summer CFM: 65		3,266	2,180	1,278	3,458
System 1, Zone 1 Load Totals:		26,708	4,467	24,840	29,307
Check Figures					
Supply CFM: 1,130		•			0.466
Square ft. of Room Area: 2,422		Per Ton:			991
Volume (ft ³): 24,220					
Zone Loads					
Total Heating Required:	26,708 I		26.708		
Total Sensible Gain:	24,840 I		85		
Total Latent Gain:	4,467 I	3tuh	15	%	

System 1, Zone 1 Summary Loads (Average Load Procedure for Rooms) (cont'd)

Zone Loads		
Total Cooling Required:	29,307 Btuh	 2.44 Tons (Based On Sensible + Latent) 2.44 Tons (Based On 75% Sensible Capacity)

Notes

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Beableeze AC IIIC

Port Charlotte, FL 33953		C							Page 15					
System 1 Room Load Summary														
		Htg	Min	Run	Run	Clg	Clg	Min	Act					
Room	Area	Sens	Htg	Duct	Duct	Sens	Lat	Clg	Sys					
No Name	SF	Btuh	CFM	Size	Vel	Btuh	Btuh	CFM	CFM					
Zone 1														
1 Entire House	2,422	26,708	347	11-7	384	24,84 0	4,467	1,130	1,130					
Duct Latent							3,136							
Return Duct		1,274				1,055	988							
System 1 total	2,422	27,981	347			25,89 4	8,590	1,130	1,130					
System 1 Main Trunk Siz	:e:	12x17	in.											
Velocity:		797	ft./min											
Loss per 100 ft.:		0.092	in.wg											
Cooling System Summary														
	Cooling	Sensible		Sensible	Latent			Total						
	U		nt											
	Tons		Split		Btuh		Btuh		Btuh					
Net Required:	2.87	75%	/ 25%		25,894		8,590		34,485					
Recommended:	2.88	75%	/ 25%		25,894		8,631		34,526					
Actual:	2.88	75%	/ 25%		25,950		8,650		34,600					
Equipment Data														
		Heating	-			Cooling S								
Туре:		Electric	Resistanc	е			d Air Cond							
Model:								ML14XC1036-230A** CBA27UHE-036-230*+TDR						
I ndoor Model:									R					
Brand:		00/					14ACX SE	RIES						
Efficiency:		0%				16 SEEF	K							
Sound: Capacity:		0 30,000	Rtub			0 34,600	Rtub							
Adjusted Capacity:		s0,000 n/a	Dluii											
Sensible Capacity:		n/a		34,600 Btuh 25,950 Btuh										
Adjusted Sensible Capacity		25,950 Btuh												
Latent Capacity:		n/a n/a				8,650 E								
Adjusted Latent Capacit	v:	n/a				8,650 E								
AHRI Reference No.:		n/a				102594								

This system's equipment was selected in accordance with ACCA Manual S.

Manual S equipment sizing data: SODB: 93F, SOWB: 77F, WODB: 47F, SI DB: 75F, SI RH: 50%, WI DB: 70F, Sen. gain: 25,894 Btuh, Lat. gain: 8,590 Btuh, Sen. loss: 27,981 Btuh, Entering clg. coil DB: 75.9F, Entering clg. coil WB: 62.8F, Entering htg. coil DB: 66.7F, Clg. coil TD: 20F, Htg. coil TD: 70F, Req. clg. airflow: 1130 CFM, Req. htg. airflow: 347 CFM

Building Rotation Duct Sizes

		Direction Front door Faces												Max			
Room or Duct Name	S		S	SW		w		NW		N		NE		E		SE	
	Htg Flow	Clg Flow	Htg Flow		Htg Flow	Clg Flow	Htg Flow		Duct Size								
System 1																	
Supply Runouts																	
Zone 1																	
1-Entire House	347	1,130	347	1,22 1	347	1,089	347	1,128	347	1,120	347	1,208	347	1,233	347	<mark>1,33(</mark>	137
Other Ducts in Syste 1																	
Supply Main Trunk	347	1,130	347	1,221	347	1,089	347	1,128	347	1,12(347	1,208	347	1,233	347	1,330	12x19
Bldg. High Dir.: Southeast	-																
Sensible Gain: 30,491																	
Latent Gain: 8,590																	\square
Summary																	
System 1																	
Heating Flow:	347																
Cooling Flow:	1130																

This combination qualifies for a Federal Energy Efficiency Tax Credit when placed in service between 1/1/2015 and 12/31/2020.

Model Status : Active

Certificate of Product Ratings

Date : 12-17-2020

AHRI Certified Reference Number : 10259423

AHRI Type : RCU-A-CB (Split System: Air-Cooled Condensing Unit, Coil with Blower) Series : MERIT ML14XC1 SERIES **Outdoor Unit Brand Name : LENNOX** Outdoor Unit Model Number (Condenser or Single Package) : ML14XC1-036-230B** Indoor Unit Model Number (Evaporator and/or Air Handler) : CBA27UHE-036-230*+TDR AII (AK, AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA, HI, ID, IL, IA, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, Region : MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WV, WI, WY, U.S. Territories) Central air conditioners manufactured prior to January 1, 2015 are eligible to be installed in all regions Region Note : until June 30, 2016. Beginning July 1, 2016 central air conditioners can only be installed in region(s) for which they meet the regional efficiency requirement. The manufacturer of this LENNOX product is responsible for the rating of this system combination. Rated as follows in accordance with the latest edition of AHRI 210/240 with Addendum 1, Performance Rating of Unitary Air-Conditioning & Air-Source Heat Pump Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Cooling Capacity (A2) - Single or High Stage (95F), btuh : 34600 SEER : 16.00 EER (A2) - Single or High Stage (95F) : 13.00

†"Active" Model Status are those that an AHRI Certification Program Participant is currently producing AND selling or offering for sale; OR new models that are being marketed but are not yet being produced."Production Stopped" Model Status are those that an AHRI Certification Program Participant is no longer producing BUT is still selling or offering for sale. Ratings that are accompanied by WAS indicate an involuntary re-rate. The new published rating is shown along with the previous (i.e. WAS) rating.

DISCLAIMER

AHRI does not endorse the product(s) listed on this Certificate and makes no representations, warranties or guarantees as to, and assumes no responsibility for, the product(s) listed on this Certificate. AHRI expressly disclaims all liability for damages of any kind arising out of the use or performance of the product(s), or the unauthorized alteration of data listed on this Certificate. Certificate ratings are valid only for models and configurations listed in the directory at www.ahridirectory.org.

TERMS AND CONDITIONS

This Certificate and its contents are proprietary products of AHRI. This Certificate shall only be used for individual, personal and confidential reference purposes. The contents of this Certificate may not, in whole or in part, be reproduced; copied; disseminated; entered into a computer database; or otherwise utilized, in any form or manner or by any means, except for the user's individual, personal and confidential reference.

CERTIFICATE VERIFICATION

The information for the model cited on this certificate can be verified at www.ahridirectory.org, click on "Verify Certificate" link and enter the AHRI Certified Reference Number and the date on which the certificate was issued, which is listed above, and the Certificate No., which is listed at bottom right.

ALERA AIR-CONDITIONING, HEATING, & REFRIGERATION INSTITUTE

we make life better™

132527293272919441

©2020 Air-Conditioning, Heating, and Refrigeration Institute

CERTIFICATE NO.: