Florida Building Code, Energy Conservation, 7th Edition (2020) Mandatory Requirements for Residential Performance, Prescriptive and ERI Methods | | | | _ | |----------|------------------|----------------|---| | ADDRESS: | 8TH AVE NE | Permit Number: | | | | NAPLES, FL 34120 | | | #### MANDATORY REQUIREMENTS - See individual code sections for full details. | SECTION R401 GENERAL | |--| | R401.3 Energy Performance Level (EPL) display card - (Mandatory). The building official shall require that an energy performance level (EPL) display card be completed and certified by the builder to be accurate and correct before final approval of the building for occupancy. Florida law (Section 553.9085, Florida Statutes) requires the EPL display card to be included as an addendum to each sales contract for both presold and nonpresold residential buildings. The EPL display card contains information indicating the energy performance level and efficiencies of components installed in a dwelling unit. The building official shall verify that the EPL display card completed and signed by the builder accurately reflects the plans and specifications submitted to demonstrate code compliance for the building. A copy of the EPL display card can be found in Appendix RD. | | SECTION R402 BUILDING THERMAL ENVELOPE | | R402.4 Air leakage (Mandatory). The building thermal envelope shall be constructed to limit air leakage in accordance with the requirements of Sections R402.4.1 through R402.4.5. | | Exception: Dwelling units of R-2 Occupancies and multiple attached single family dwellings shall be permitted to comply with Section C402.5. | | R402.4.1 Building thermal envelope. The building thermal envelope shall comply with Sections R402.4.1.1 and R402.4.1.2. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. | | R402.4.1.1 Installation. The components of the building thermal envelope as listed in Table R402.4.1.1 shall be installed in accordance with the manufacturer's instructions and the criteria listed in Table R402.4.1.1, as applicable to the method of construction. Where required by the code official, an approved third party shall inspect all components and verify compliance. | | R402.4.1.2 Testing. The building or dwelling unit shall be tested and verified as having an air leakage rate not exceeding seven air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 3 through 8. Testing shall be conducted in accordance with ANSI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 pascals). Testing shall be conducted by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i) or an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope. | | Exception: Testing is not required for additions, alterations, renovations, or repairs, of the building thermal envelope of existing buildings in which the new construction is less than 85 percent of the building thermal envelope. | | During testing: 1. Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures. 2. Dampers including exhaust, intake, makeup air, backdraft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures. 3. Interior doors, if installed at the time of the test, shall be open. 4. Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed. 5. Heating and cooling systems, if installed at the time of the test, shall be turned off. 6. Supply and return registers, if installed at the time of the test, shall be fully open. | | R402.4.2 Fireplaces. New wood-burning fireplaces shall have tight-fitting flue dampers or doors, and outdoor combustion air. Where using tight-fitting doors on factory-built fireplaces listed and labeled in accordance with UL 127, the doors shall be tested and listed for the fireplace. Where using tight-fitting doors on masonry fireplaces, the doors shall be listed and labeled in accordance with UL 907. | | R402.4.3 Fenestration air leakage. Windows, skylights and sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm per square foot (1.5 L/s/m2), and swinging doors no more than 0.5 cfm per square foot (2.6 L/s/m2), when tested according to NFRC 400 or AAMA/WDMA/CSA 101/LS.2/A440 by an accredited, independent laboratory and listed and labeled by the manufacturer. | #### in accordance with Section R403. The combustion air duct shall be insulated where it passes through conditioned space to a minimum of R-8. **Exception:** Site-built windows, skylights and doors. Exceptions: 1. Direct vent appliances with both intake and exhaust pipes installed continuous to the outside. **R402.4.4 Rooms containing fuel - burning appliances.** In Climate Zones 3 through 8, where open combustion air ducts provide combustion air to open combustion fuel burning appliances, the appliances and combustion air opening shall be located outside the building thermal envelope or enclosed in a room, isolated from inside the thermal envelope. Such rooms shall be sealed and insulated in accordance with the envelope requirements of Table R402.1.2, where the walls, floors and ceilings shall meet not less than the basement wall R-value requirement. The door into the room shall be fully gasketed and any water lines and ducts in the room insulated 2. Fireplaces and stoves complying with Section R402.4.2 and Section R1006 of the Florida Building Code, Residential. ### MANDATORY REQUIREMENTS (Continued) | | not more than 2.0 cfm (0.944 L/s) when tested in accordance with ASTM E283 at a 1.57 psf (75 Pa) pressure differential. All recessed luminaires shall be sealed with a gasket or caulk between the housing and the interior wall or ceiling covering. | |---|--| | | SECTION R403 SYSTEMS | | | R403.1 Controls R403.1.1 Thermostat provision (Mandatory). At least one thermostat shall be provided for each separate heating and cooling system | | | R403.1.3 Heat pump supplementary heat (Mandatory). Heat pumps having supplementary electric-resistance heat shall have controls that, except during defrost, prevent supplemental heat operation when the heat pump compressor can meet the heating load. | | | R403.3.2 Sealing (Mandatory). All ducts, air handlers, filter boxes and building cavities that form the primary air containment passageways for air distribution systems shall be considered ducts or plenum chambers, shall be constructed and sealed in accordance with Section C403.2.9.2 of the Commercial Provisions of this code and shall be shown to meet duct tightness criteria below. | | | Duct tightness shall be verified by testing in accordance with ANSI/RESNET/ICC 380 by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i), Florida Statutes, to be "substantially leak free" in accordance with Section R403.3.3. | | | R403.3.2.1 Sealed air handler. Air handlers shall have a manufacturer's designation for an air leakage of no more than 2 percent of the design airflow rate when tested in accordance with ASHRAE 193. | | | R403.3.3 Duct testing (Mandatory). Ducts shall be pressure tested to determine air leakage by one of the following methods: 1. Rough-in test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the system, including the manufacturer's air handler enclosure if installed at the time of the test. All registers shall be taped or otherwise sealed during the test. | | | 2 Postconstruction test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the entire system, including the manufacturer's air handler enclosure. Registers shall be taped or otherwise sealed during the test.
Exceptions; | | | A duct air leakage test shall not be required where the ducts and air handlers are located entirely within the building
thermalenvelope. | | | 2. Duct testing is not mandatory for buildings complying by Section 405 of this code. Duct leakage
testing is required for Section R405 compliance where credit is taken for leakage, and a duct air leakage Qn to the outside of less than 0.080 (where Qn = duct leakage to the outside in cfm per 100 square feet of conditioned floor area tested at 25 Pascals) is indicated in the compliance report for the proposed design. | | _ | A written report of the results of the test shall be signed by the party conducting the test and provided to the code official | | | R403.3.5 Building cavities (Mandatory). Building framing cavities shall not be used as ducts or plenums | | | R403.4 Mechanical system piping insulation (Mandatory). Mechanical system piping capable of carrying fluids above 105°F (41°C) or below 55°F (13°C) shall be insulated to a minimum of R-3. | | | R403.4.1 Protection of piping insulation. Piping insulation exposed to weather shall be protected from damage, including that caused by sunlight, moisture, equipment maintenance and wind, and shall provide shielding from solar radiation that can cause degradation of the material. Adhesive tape shall not be permitted. | | | R403.5.1 Heated water circulation and temperature maintenance systems (Mandatory). If heated water circulation systems are installed, they shall be in accordance with Section R403.5.1.1. Heat trace temperature maintenance systems shall be in accordance with Section R403.5.1.2. Automatic controls, temperature sensors and pumps shall be accessible. Manual controls shall be readily accessible. | | | R403.5.1.1 Circulation systems. Heated water circulation systems shall be provided with a circulation pump. The system return pipe shall be a dedicated return pipe or a cold water supply pipe. Gravity and thermosiphon circulation systems shall be prohibited. Controls for circulating hot water system pumps shall start the pump based on the identification of a demand for hot water within the occupancy. The controls shall automatically turn off the pump when the water in the circulation loop is at the desired temperature and when there is no demand for hot water. | | | R403.5.1.2 Heat trace systems. Electric heat trace systems shall comply with IEEE 515.1 or UL 515. Controls for such systems shall automatically adjust the energy input to the heat tracing to maintain the desired water temperature in the piping in accordance with the times when heated water is used in the occupancy. | | | | **R402.4.5 Recessed lighting.** Recessed luminaires installed in the building thermal envelope shall be sealed to limit air leakage between conditioned and unconditioned spaces. All recessed luminaires shall be IC-rated and labeled as having an air leakage rate ### MANDATORY REQUIREMENTS (Continued) | shall have heat traps (mandatory). Storage water neaters not equipped with integral neat traps and naving vertical pipe risers shall have heat traps installed on both the inlets and outlets. External heat traps shall consist of either a commercially available heat trap or a downward and upward bend of at least 3 ½ inches (89 mm) in the hot water distribution line and cold water line located as close as possible to the storage tank. | |---| | R403.5.6 Water heater efficiencies (Mandatory). R403.5.6.1.1 Automatic controls. Service water-heating systems shall be equipped with automatic temperature controls capable of adjustment from the lowest to the highest acceptable temperature settings for the intended use. The minimum temperature setting range shall be from 100°F to 140°F (38°C to 60°C). | | R403.5.6.1.2 Shut down. A separate switch or a clearly marked circuit breaker shall be provided to permit the power supplied to electric service systems to be turned off. A separate valve shall be provided to permit the energy supplied to the main burner(s) of combustion types of service water-heating systems to be turned off. | | R403.5.6.2 Water-heating equipment. Water-heating equipment installed in residential units shall meet the minimum efficiencies of Table C404.2 in Chapter 4 of the Florida Building Code, Energy Conservation, Commercial Provisions, for the type of equipment installed. Equipment used to provide heating functions as part of a combination system shall satisfy all stated requirements for the appropriate water-heating category. Solar water heaters shall meet the criteria of Section R403.5.6.2.1. | | R403.5.6.2.1 Solar water-heating systems. Solar systems for domestic hot water production are rated by the annual solar energy factor of the system. The solar energy factor of a system shall be determined from the Florida Solar Energy Center Directory of Certified Solar Systems. Solar collectors shall be tested in accordance with ISO Standard 9806, Test Methods for Solar Collectors, and SRCC Standard TM-1, Solar Domestic Hot Water System and Component Test Protocol. Collectors in installed solar water-heating systems should meet the following criteria: 1. Be installed with a tilt angle between 10 degrees and 40 degrees of the horizontal; and 2. Be installed at an orientation within 45 degrees of true south. | | R403.6 Mechanical ventilation (Mandatory). The building shall be provided with ventilation that meets the requirements of the Florida Building Code, Residential, or Florida Building Code, Mechanical, as applicable, or with other approved means of ventilation including: Natural, Infiltration or Mechanical means. Outdoor air intakes and exhausts shall have automatic or gravity dampers that close when the ventilation system is not operating. | | R403.6.1 Whole-house mechanical ventilation system fan efficacy. When installed to function as a whole-house mechanical ventilation system, fans shall meet the efficacy requirements of Table R403.6.1. | | Exception: Where an air handler that is integral to tested and listed HVAC equipment is used to provide whole-house mechanical ventilation, the air handler shall be powered by an electronically commutated motor. | | R403.6.2 Ventilation Air. Residential buildings designed to be operated at a positive indoor pressure or for mechanical ventilation shall meet the following criteria: | | The design air change per hour minimums for residential buildings in ASHRAE 62.2, Ventilation
for Acceptable Indoor Air Quality, shall be the maximum rates allowed for residential applications. | | No ventilation or air-conditioning system make-up air shall be provided to conditioned space from attics,
crawlspaces, attached enclosed garages or outdoor spaces adjacent to swimming pools or spas. | | 3. If ventilation air is drawn from enclosed space(s), then the walls of the space(s) from which air is drawn shall be insulated to a minimum of R-11 and the ceiling shall be insulated to a minimum of R-19, space permitting, or R-10 otherwise. | | R403.7.1 Equipment sizing (Mandatory). Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on the equipment loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies, based on building loads for the directional orientation of the building. The manufacturer and model number of the outdoor and indoor units (if split system) shall be submitted along with the sensible and total cooling capacities at the design conditions described in Section R302.1. This Code does not allow designer safety factors, provisions for future expansion or other factors that affect equipment sizing. System sizing calculations shall not include loads created by local intermittent mechanical ventilation such as standard kitchen and bathroom exhaust systems. New or replacement heating and cooling equipment shall have an efficiency rating equal to or greater than the minimum required by federal law for the geographic location where the equipment is installed. | #### MANDATORY REQUIREMENTS (Continued) ## TABLE R403.6.1 WHOLE-HOUSE MECHANICAL VENTILATION SYSTEM FAN EFFICACY | FAN LOCATION | AIRFLOW RATE MINIMUM
(CFM) | MINIMUM EFFICACY ^a
(CFM/WATT) | AIRFLOW RATE MAXIMUM
(CFM) | |------------------------|-------------------------------|---|-------------------------------| | HRV or ERV | Any | 1.2 cfm/watt | Any | | Rangehoods | Any | 2.8 cfm/watt | Any | | In-line fan | Any | 2.8 cfm/watt | Any | | Bathroom, utility room | 10 | 1.4 cfm/watt | <90 | | Bathroom, utility room | 90 | 2.8 cfm/watt | Any | For SI: 1 cfm = 28.3 L/min. **R403.7.1.1 Cooling equipment capacity.** Cooling only equipment shall be selected so that its total capacity is not less than the calculated total load but not more than 1.15 times greater than the total load calculated according to the procedure selected in Section R403.7, or the closest available size provided by the manufacturer's product lines. The corresponding latent capacity of the equipment shall not be less than the calculated latent load. The
published value for AHRI total capacity is a nominal, rating-test value and shall not be used for equipment sizing. Manufacturer's expanded performance data shall be used to select cooling-only equipment. This selection shall be based on the outdoor design dry-bulb temperature for the load calculation (or entering water temperature for water-source equipment), the blower CFM provided by the expanded performance data, the design value for entering wet-bulb temperature and the design value for entering dry-bulb temperature. Design values for entering wet-bulb and dry-bulb temperatures shall be for the indoor dry bulb and relative humidity used for the load calculation and shall be adjusted for return side gains if the return duct(s) is installed in an unconditioned space. #### **Exceptions:** - 1. Attached single- and multiple-family residential equipment sizing may be selected so that its cooling capacity is less than the calculated total sensible load but not less than 80 percent of that load. - 2. When signed and sealed by a Florida-registered engineer, in attached single- and multiple-family units, the capacity of equipment may be sized in accordance with good design practice. #### R403.7.1.2 Heating equipment capacity. | R403.7.1.2.1 Heat pumps. Heat pump sizing shall be based on the cooling requirements as calculated according to Section R403.7.1.1, and the heat pump total cooling capacity shall not be more than 1.15 times greater than the design cooling load even if the design heating load is 1.15 times greater than the design cooling load. | |---| | R403.7.1.2.2 Electric resistance furnaces. Electric resistance furnaces shall be sized within 4 kW of the design requirements calculated according to the procedure selected in Section R403.7.1. | | R403.7.1.2.3 Fossil fuel heating equipment. The capacity of fossil fuel heating equipment with natural draft atmospheric burners shall not be less than the design load calculated in accordance with Section R403.7.1. | | R403.7.1.3 Extra capacity required for special occasions. Residences requiring excess cooling or heating equipment capacity on an intermittent basis, such as anticipated additional loads caused by major entertainment events, shall have equipment sized or controlled to prevent continuous space cooling or heating within that space by one or more of the following options: 1. A separate cooling or heating system is utilized to provide cooling or heating to the major entertainment areas. 2. A variable capacity system sized for optimum performance during base load periods is utilized. | | R403.8 Systems serving multiple dwelling units (Mandatory). Systems serving multiple dwelling units shall comply with Sections C403 and C404 of the Florida Building Code, Energy Conservation—Commercial Provisions in lieu of Section R403. | | R403.9 Snow melt and ice system controls (Mandatory). Snow- and ice-melting systems, supplied through energy service to the building, shall include automatic controls capable of shutting off the system when the pavement temperature is above 50°F (10°C), and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F (4.8°C). | | 403.10 Pools and permanent spa energy consumption (Mandatory). The energy consumption of pools and permanent spas shall be in accordance with Sections R403.10.1 through R403.10.5. | | R403.10.1 Heaters. The electric power to heaters shall be controlled by a readily accessible on-off switch that is an integral part of the heater mounted on the exterior of the heater, or external to and within 3 feet (914 mm) of the heater. Operation of such switch shall not change the setting of the heater thermostat. Such switches shall be in addition | Gas-fired heaters shall not be equipped with continuously burning ignition pilots. a. When tested in accordance with HVI Standard 916 #### MANDATORY REQUIREMENTS (Continued) **R403.10.2 Time switches.** Time switches or other control methods that can automatically turn off and on according to a preset schedule shall be installed for heaters and pump motors. Heaters and pump motors that have built-in time switches shall be in compliance with this section. **Exceptions:** 1. Where public health standards require 24-hour pump operation. 2. Pumps that operate solar- and waste-heat-recovery pool heating systems 3. Where pumps are powered exclusively from on-site renewable generation. R403.10.3 Covers. Outdoor heated swimming pools and outdoor permanent spas shall be equipped with a vapor-retardant cover on or at the water surface or a liquid cover or other means proven to reduce heat loss. **Exception:**Where more than 70 percent of the energy for heating, computed over an operation season, is from site-recovered energy, such as from a heat pump or solar energy source, covers or other vapor-retardant means shall not be required R403.10.4 Gas- and oil-fired pool and spa heaters. All gas- and oil-fired pool and spa heaters shall have a minimum thermal efficiency of 82 percent for heaters manufactured on or after April 16, 2013, when tested in accordance with ANSI Z 21.56. Pool heaters fired by natural or LP gas shall not have continuously burning pilot lights. R403.10.5 Heat pump pool heaters. Heat pump pool heaters shall have a minimum COP of 4.0 when tested in accordance with AHRI 1160, Table 2, Standard Rating Conditions-Low Air Temperature. A test report from an independent laboratory is required to verify procedure compliance. Geothermal swimming pool heat pumps are not required to meet this standard. R403.11 Portable spas (Mandatory). The energy consumption of electric-powered portable spas shall be controlled by the requirements of APSP-14 **R403.13 Dehumidifiers (Mandatory).** If installed, a dehumidifier shall conform to the following requirements: 1. The minimum rated efficiency of the dehumidifier shall be greater than 1.7 liters/ kWh if the total dehumidifier capacity for the house is less than 75 pints/day and greater than 2.38 liters/kWh if the total dehumidifier capacity for the house is greater than or equal to 75 pints/day. 2. The dehumidifier shall be controlled by a sensor that is installed in a location where it is exposed to mixed house air. 3. Any dehumidifier unit located in unconditioned space that treats air from conditioned space shall be insulated to a minimum of R-2. 4. Condensate disposal shall be in accordance with Section M1411.3.1 of the Florida Building Code, Residential. - R403.13.1 Ducted dehumidifiers. Ducted dehumidifiers shall, in addition to conforming to the requirements of Section R403.13, conform to the following requirements: - 1. If a ducted dehumidifier is configured with return and supply ducts both connected into the supply side of the cooling system, a backdraft damper shall be installed in the supply air duct between the dehumidifier inlet and outlet duct. - 2. If a ducted dehumidifier is configured with only its supply duct connected into the supply side of the central heating and cooling system, a backdraft damper shall be installed in the dehumidifier supply duct between the dehumidifier and central supply duct. - 3. A ducted dehumidifier shall not be ducted to or from a central ducted cooling system on the return duct side upstream from the central cooling evaporator coil. - 4. Ductwork associated with a dehumidifier located in unconditioned space shall be insulated to a minimum of R-6. #### SECTION R404 ELECTRICAL POWER AND LIGHTING SYSTEMS R404.1 Lighting equipment (Mandatory). Not less than 90 percent of the lamps in permanently installed luminaires shall have an efficacy of at least 45 lumens-per-watt or shall utilize lamps with an efficacy of not less than 65 lumens-per-watt. R404.1.1 Lighting equipment (Mandatory). uel gas lighting systems shall not have continuously burning pilot lights. ## 2020 - AIR BARRIER AND INSULATION INSPECTION COMPONENT CRITERIA TABLE 402.4.1.1 ### AIR BARRIER AND INSULATION INSPECTION COMPONENT CRITERIA® Project Name: EOS - 8TH AVE NE 40627080007 **Builder Name:** Street: 8TH AVE NE Permit Office: NAPLES, FL, 34120 City, State, Zip: Permit Number: CHECK Owner: ALAMO INVESTS PROPERTIES LLC Jurisdiction: Design Location: County: Collier(Florida Climate Zone 1) FL, Lee/Collier COMPONENT AIR BARRIER CRITERIA INSULATION INSTALLATION CRITERIA A continuous air barrier shall be installed in the building envelope. General Air-permeable insulation shall The exterior thermal envelope contains a continuous air barrier. not be used as a sealing material. requirements Breaks or joints in the air barrier shall be sealed. The air barrier in any dropped ceiling/soffit shall be aligned with The insulation in any dropped ceiling/soffit the insulation and any gaps in the air barrier shall be sealed. Ceiling/attic shall be aligned with the air barrier. Access openings, drop down stairs or knee wall doors to unconditioned attic spaces shall be sealed. The junction of the foundation and sill plate shall be sealed. Cavities within corners and headers of frame walls Walls The junction of the top plate and the top of exterior walls shall be shall be insulated by completely filling the cavity with sealed. a material having a thermal resistance of R-3 per Knee walls shall be sealed. inch minimum Exterior thermal envelope insulation for
framed walls shall be installed in substantial contact and continuous alignment with the air barrier. Windows, skylights The space between window/door jambs and framing, and and doors skylights and framing shall be sealed. Rim joists Rim joists shall include the air barrier. Rim joists shall be insulated. Floors The air barrier shall be installed at any exposed edge of Floor framing cavity insulation shall be installed to maintain permanent contact with the underside of (including insulation above-garage subfloor decking, or floor framing cavity insulation andcantilevered shall be permitted to be in contact with the top side of sheathing, or continuous insulation installed on floors) the underside of floor framing and extends from the bottom to the top of all perimeter floor framing Crawl space walls Exposed earth in unvented crawl spaces shall be covered Where provided instead of floor insulation, insulation shall be permanently attached to the crawlspace walls. with a Class I vapor retarder with overlapping joints taped. Shafts, penetrations Duct shafts, utility penetrations, and flue shafts opening to exterior or unconditioned space shall be sealed. Batts in narrow cavities shall be cut to fit, or narrow Narrowcavities cavities shall be filled by insulation that on installation readily conforms to the available cavity spaces. Garageseparation Air sealing shall be provided between the garage and conditioned spaces. Recessedlighting Recessed light fixtures installed in the building thermal Recessed light fixtures installed in the building envelope shall be sealed to the finished surface. thermal envelope shall be air tight and IC rated. Batt insulation shall be cut neatly to fit around wiring Plumbing and wiring and plumbing in exterior walls, or insulation that on installation readily conforms to available space shall extend behind piping and wiring. Exterior walls adjacent to showers and tubs shall Shower/tub The air barrier installed at exterior walls adjacent to showers on exterior wall and tubs shall separate them from the showers and tubs. beinsulated. Electrical/phonebox The air barrier shall be installed behind electrical or on exterior walls communication boxes or air-sealed boxes shall be installed. HVAC supply and return register boots that penetrate building **HVAC** register boots thermal envelope shall be sealed to the sub-floor, wall covering or ceiling penetrated by the boot. When required to be sealed, concealed fire sprinklers shall only Concealed sprinklers be sealed in a manner that is recommended by the manufacturer. Caulking or other adhesive sealants shall not be used to fill voids voids between fire sprinkler cover plates and walls or ceilings. a. In addition, inspection of log walls shall be in accordance with the provisions of ICC-400. | | | | | PROJ | ECT | | | | | | | | |--|----------------------------------|--|---|--|---|---|------------------------------|--|--|--|--|--| | Title: Building Type: Owner: Builder Name: Permit Office: Jurisdiction: Family Type: New/Existing: Year Construct: Comment: | User | AVE NE 40627080007 VESTS PROPERTIES LLC Plans) | C Condition
Total Stori
Worst Cas
Rotate An
Cross Ver
Whole Ho
Terrain: | Total Stories:
Worst Case:
Rotate Angle:
Cross Ventilation:
Whole House Fan: | | Address type:
Lot #:
Block/SubDivi
PlatBook:
Street:
County:
City, State, Zip | | Street Add on: 8TH AVE Collier NAPLES, FL, 34120 | | | | | | | | | | CLIM | ATE | | | | | | | | | Design
Location | | Tmy Site | | Desig
97.5% | In Temp
2.5% | | ign Temp
Summer | Heating
Degree Days | Design
Moisture | Dailytemp
Range | | | | FL, Lee/Collie | | FL_SOUTHWEST_ | _FLORIDA_ | _I 46 | 91 | 70 | 75 | 321 | 58 | Medium | | | | | | | | UTIL | ITY | | | | | | | | | Fuel | Unit | Utility Name | | | | | Month | y Fixed Cost | \$. | /Unit | | | | Electricity Natural Gas Fuel Oil Propane | kWh
Therm
Gallon
Gallon | EnergyGaugeDefault
EnergyGaugeDefault
EnergyGaugeDefault
EnergyGaugeDefault | | | | | 0.00
0.00
0.00
0.00 | | | 0.13
0.68
1.10
1.40 | | | | | | | SUF | RROU | NDINGS | | | | | | | | | Ornt Type | |
Heig | Shade
ht | Trees
Width | Distance | E | Exist | Adjace
Height | nt Buildings
Width | Distance | | | | N None NE None E None SE None S None SW None W None NW None | | 0
0
0
0
0
0 | ft
ft
ft
ft
ft | 0 ft
0 ft
0 ft
0 ft
0 ft
0 ft
0 ft | 0 ft | | | O ft
O ft
O ft
O ft
O ft
O ft
O ft | 0 ft
0 ft
0 ft
0 ft
0 ft
0 ft
0 ft | 0 ft
0 ft
0 ft
0 ft
0 ft
0 ft
0 ft | | | | | | | | BLO | CKS | | | | | | | | | Number | Name | Area | Vol | ume | | | | | | | | | | 1 | Block1 | 1630 | 16300 |) | | | | | | | | | | | | | | SPAC | CES | | | | | | | | | Number | Name | Area | Volume | Kitchen | Occupants | Ве | drooms | Finished | Cooled | d Heated | | | | 1 | Main | 1630 | 16300 | Yes | 4 | | 3 | Yes | Yes | Yes | | | | | | | | FLOC | DRS | | (Total Ex | cposed Ar | ea = 163 | 80 sq.ft.) | | | | / _# FloorTy | | Space | ExposedF | | erimeterR-Val | | | or Joist R-Valu | e Tile Wo | ood Carpe | | | | | | | | | | | | F | LOO | RS | (Con | tinue | ed) | | | | | | | | |------------|---|-----------------------------|---|--|--|--|---------------------------------|--|--|----------------|---------------------------------------|---|--------------------------------------|--|---|--|--|-----------------|--|--| | V # | ŧ | FI | oor Ty | /pe | | S | pace | Ex | posedPe | erim | Perim | eterR-V | 'alue | Area | U-Factor | Joist R- | Value | Tile | Wood | Carpet | | | 1 | Slab | o-On-(| Grade Edg | e Ins | | Main | | 180 | | 0 | | | 1630 ft | 0.304 | | | 0.00 | 0.00 | 1.00 | | | | | | | | | | | | R | OOF | | | | | | | | | | | / # | ŧ | Ty | /ре | | | | Material | s | Ro
Are | | Gabl
Area | | | Rad
Barr | Solar
Absor. | SA
Tested | Emitt | Emitt
Tested | Deck
Insul. | Pitch
(deg) | | | 1 | Hip | | | | Comp | ositions | hingles | 1766 | 6 ft² | 0 ft² | Medi | um | N | 0.96 | No | 0.9 | No | 0 | 22.62 | | L | | | | | | | | | | A ⁻ | TTIC | | | | | | | | | | | \/ # | ŧ | Ту | /ре | | | | Vent | ilation | | Ven | nt Ratio (| 1 in) | Are | a | RBS | | IRCC | | | | | | 1 | Full | attic | | | | Ve | nted | | | 300 | | 1630 |) ft² | N | | N | | | | | | | | | | | | | | | CE | ILING | } | | (T | otal Ex | posed | Area | a = 1 | 630 sq | .ft.) | | \/ # | ŧ | C | eiling [*] | Туре | | | | Spa | ce | R | -Value | Ins. T | уре | Area | u U-Fa | ctor Fr | aming l | Frac. | Trus | s Type | | | 1 | Und | erAtti | c(Vented) | | | | Ма | in | | 30.0 | Bat | t | 1630.0 |)ft² 0.0 | 64 | 0.11 | | W | ood | | | WALLS (Total Exposed Area = 1788 sq.ft.) | | | | | | | | .ft.) | | | | | | | | | | | | | \/ # | ŧ 0 | Ornt | | acent
Го | Wall | Туре | | Space |) | | avity
-Value | Width
Ft I | n | Heigh
Ft I | | | She
or R-Va | | rm. Solar
rac. Abso | Below
r. Grade | | | 2
3
4 | N
N
S
W
E | | Garage
Exterior
Exterior
Exterior
Exterior | Conc.
Conc.
Conc. | e - Wood
Blk - Int
Blk - Int
Blk - Int
Blk - Int | Ins
Ins
Ins | N
N
N | 1ain
1ain
1ain
1ain
1ain | | 19.0
4.1
4.1
4.1
4.1 | 28.0
47.0
42.0 | 0
4
4
1 | 10.0
10.0
10.0
10.0
10.0 | 0 190
0 283
0 473
0 420
0 420 | 3.3 0.12
3.3 0.12
0.8 0.12 | 28 1.7
28 1.7
28 1.7 | 11 (
11 (| 0.75
0 0.75
0 0.75 | 0 %
0 %
0 % | | | | | | | | | | | | DC | ORS | 3 | | | (Total | Expos | ed A | rea = | = 58 sq | .ft.) | | \ # | ŧ O | Ornt | | Adjacent | To Do | or Type | | Space |) | | Stori | ms | | U-Valı | ue | Width
Ft In | | Height
Ft In | | rea | | | | S
N | | Garage
Exterior | | ood
sulated | | Mair
Mair | | | | ne
ne | | 0.4
0.4 | | .00 8
.00 0 | 6.0
8.0 | | | .8ft²
.0ft² | | | | | | | | | | | ٧ | VIN | DOW | /S | | (| Total E | xpose | d Are | ea = | 179 sq | .ft.) | | \/ # | ŧ O | Ornt | Wall
ID | Frame | Pa | nes | NFRC | U-Factor | SHGC | lmp | Storm | Total
Area
(ft²) | San
Uni | | dth Heigh
t) (ft) | tOve
Depth
(ft) | | | riorShade | Screen | | | 1 N
2 N
3 S
4 S
5 S
7 W
9 E | I
;;
;
;
V
V | 2
2
3
3
3
3
4
4
5 |
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal | Single (
Single (
Single (
Single (
Single (
Single (
Single (
Single (
Single (
Single (| Clear) Clear) Clear) Clear) Clear) Clear) Clear) Clear) | Y
Y
Y
Y
Y
Y
Y | 0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30 | X | N N N N N N N N N N N N N N N N N N N | 16.2
16.2
16.2
5.1
16.2
16.2
5.1
16.2
8.0 | 1
1
1
1
1
1
1
1 | 3.0
3.0
3.0
2.3
3.0
2.3
3.0
6.0 | 08 5.25
08 5.25
25 2.25
08 5.25
08 5.25
25 2.25
08 5.25 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | None
None
None
None
None
None
None
None | None
None
None
None
None
None
None | | | | | | WIN | DOWS | (Con | tinue | ed) | | | | | | | |----------------|------------------------------------|-------------------------|------------------------|----------------|--|--------------------|------------------|----------------|-----------------------|-------------|--------------------|-------------------|--------------------|-----------| | 108 | S 3 M | etal Single(Clear) | Y 1. | 12 | 0.50 N | N | 64.0 | 1 | 8.00 | 8.00 | 1.3 0. | 0 | None | None | | | | | | | INFILT | RATI | ON | | | | | | | | | √# S | Scope | Method | SLA | CFI | M50 E | ELA | EqLA | | ACH | ACH50 | | Spa | ace(s) | | | 1 | Wholehouse | Proposed ACH(50) | 0.00044 | 19 | 02 10 | 04.33 | 195.87 | 7 0 |).1460 | 7.0 | | | All | | | , | | | | | GAI | RAGE | • | | | | | | | | | / # | Floor | Area | Roof Area | | Exposed | d Wall Per | imeter | | Avg. \ | Wall Heig | ht | Exposed | l Wall Ins | ulation | | 1 | 379 | 9 ft² | 379 ft ² | | | 57 ft | | | | 10 ft | | | 1 | | | | | | | | M | ASS | | | | | | | | | | / # | Mass Type | | Area | | Т | hickness | | Furr | nitureFract | tion | Spa | ace | | | | 1 | Default(8 lbs/s | q.ft.) | 0 ft² | | | 0 ft | | | 0.30 | | М | ain | | | | HEATING SYSTEM | | | | | | | | | | | | | | | | / # | SystemType | | Subtype/Spee | ed | AHRI# | Efficie | ncy | Capad
kBtu/ | | | rmalHeat
ver Vo | Pump
olt Curre | Ducts | Block | | 1
1A | Electric Heat P
Electric Heat P | | None/Single
None/ | | | HSPF: 1
HSPF: 1 | | 18.0
20.0 | | 0.0
0.0 | | |) sys#1
) sys#1 | 1
1 | | | | | | CC | OLIN | G SYS | STEN | / | | | | | | | | / # | SystemType | | Subtype/Spee | ed | AHRI# | Effic | eiency | | Capacity
kBtu/hr | | r Flow
cfm | SHR | Duct | Block | | 1
1A | Central Unit
Central Unit | | None/Sing
None/Sing | | | _ | R:16.0
R:15.0 | 36.0
36.0 | | | 1080
1080 | 0.75
0.75 | sys#1
sys#1 | 1
1 | | | | | | | AHU S | YSTE | EM | | | | | | | | | / # | Test Mode Sy | ystem Number & Typ | e (Proposed) | | Grade | | | | | DES
Cool | IGN CFM
Hea | | oposed | | | 1 | 1 - 0 | Central Unit/1 - Electi | ric Heat Pump | | III (AirF
III (Wa
III (Ref
III (Dud | ttDraw)
rig) | uct Sys | tem # 1 | | 108 | 30 | - | | | | | | | | НОТ | T WAT | ER S | /STE | EM_ | | | | | | | | / # | SystemType | Subtype | Location | | EF(UEF) | Сар | ι | Jse | SetPnt | Fixture | eFlow | Pipe Ins. | Pipe | elength | | 1 | Electric | None | Garage | | 0.92 (0.92 |) 40.00 g | jal 60 | 0 gal | 120 deg | Stan | dard | None | | 88 | | | Recirculation
System | Recirc Contro
Type | ol | Loop
length | Branch
length | Pump
powe | | NHR | Facilitie
Connecte | | | DWHR
Eff | Othe | r Credits | | 1 | No | | | NA | NA | NA | No |) | NA | N | A | NA | Non | е | | | | | | | | DU | JCTS | | | | | | | | |--------------------------------------|------------------------------|--|------------------------------|-------------------------------|--------------------|----------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|----------|-------------------------|-----------------------------| | Duct
| Sup
Location | ply
R-Value A | | Reti
ation I | | Area | Leakag | еТуре | Air
Handler | CFM 25
TOT | CFM 25
OUT | QN | RLF I | HVAC #
Heat Cool | | 1 M | ain | 6.0 302 | ft² Main | | 6.0 7 | 6 ft² | DefaultLe | eakage | Attic | (Default) (| (Default) | | | 1 1 | | | | | | | TE | MPE | RATU | IRES | | | | | | | | Progra
Coolir
Heatir
Ventir | ng [X] Jan | stat: N
[] Feb
[X] Feb
[] Feb | [] Mar
[X] Mar
[X] Mar | [] Apr
[] Apr
[X] Apr | Ce
[]Ma
[]Ma | у [| ns: N
K] Jun
] Jun
] Jun | [X] Jul
[] Jul
[] Jul | [X] Aug
[] Aug
[] Aug | [X] Sep
[] Sep
[] Sep | [] Oct
[] Oct
[X] Oc | [X | Nov
] Nov
] Nov | [] Dec
[X] Dec
[] Dec | | | rmostat Schedu
edule Type | ule: HERS 20 | 006 Referen
1 | ice
2 | 3 | 4 | 5 | 6 | lours
7 | 8 | 9 | 10 | 11 | 12 | | Coo | oling (WD) | AM
PM | 78
78 3 78
3 78 | | Coc | oling (WEH) | AM
PM | 78
78 | | Hea | ating (WD) | AM
PM | 68
68 8 68
8 68 | | Hea | ating (WEH) | AM
PM | 68
68 8 68
8 68 | | | | | | | RE | FRIG | ERA1 | ORS | | | | | | | | √ID | Туре | Screer | n | Location | | Quant | ity Vol | Frz. Vol | Make | Мо | del | Sche | dule | kWhPerYr | | 1 Defa | aultRefrigerator | Defaul | t New | Main | | 1 | 26 | 5 | | | | HEF | RS2011 | | | | | | | | CLO | THES | S WAS | SHERS | 3 | | | | | | | √ID | Туре | Scree | n | Location | | Capac | ity | | Make | Мо | del | Sche | dule | LoadsPerYr | | 1 Clw | asher | Default N | New | Main | | 2. | 874 | | | | | HEF | RS2011 | 312 | | | | | | | CLC | THE | S DR | YERS | | | | | | | | √ID | Туре | Scree | n | Location | | Quant | ity Fue | Туре | Make | Мо | del | Sche | dule | kWhPerYr | | 1 Drye | er | Default Ex | isting | Main | | 4. | 5 Elec | ctricity | | | | HEF | RS2011 | 314 | | , | | | | | DI | SHW | ASHI | ERS | | | | | | | | √ID | Туре | Scree | n | Location | | Capac | city Vir | ntage | Make | Мо | del | Sche | dule | kWhPerYr | | 1 Dish | nwasher | Default N | New | Main | | 12 | 2 2013 0 | or Newer | | | | HEF | RS2011 | 372 | | | | | | ŀ | HARD | WIR | ED LI | GHTIN | IG | | | | | | | √ID | Туре | Scree | n | Location | Total | # Quar | ntity# C | Comp FI | All Other FI | Bulb Type | e Sch | edule | Watts | s per bulb | | | MISC ELECTRICAL LOADS | | | | | | | | | |-----|-----------------------|----------------|----------|------|----------|----------|-----------|----------|-------------| | √ID | Туре | Screen | Location | Item | Quantity | Catagory | Operating | Schedule | Off Standby | | 1 | Misc Elec Load | Simple Default | Main | | 1 | | 1 | HERS2011 | 1 | | Name(Print): | Signature: | | | | | |---------------|------------|--|--|--|--| | Organization: | Date: | | | | | #### FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Business and Professional Regulation - Residential Performance Method | Project Name: EOS - 8TH AVE NE 40627080007 Street: 8TH AVE NE City, State, Zip: NAPLES, FL, 34120 Owner: ALAMO INVESTS PROPERTIES I Design Location: FL, Lee/Collier | Builder Name: Permit Office: Permit Number: LC Jurisdiction: County: Collier(Florida Climate Zone 1) | |--|---| | Number of units, if multiple family Number of Bedrooms Is this a worst case? Conditioned floor area above grade
(ft²) Conditioned floor area below grade (ft²) Windows(179.3 sqft.) Description a. U-Factor: Sgl, U=0.60 115 SHGC: SHGC=0.30 b. U-Factor: Sgl, U=1.12 64 SHGC: SHGC=0.50 | a. Concrete Block - Int Insul, ExteriorR=4.1 1598.30 ft² b. Frame - Wood, Adjacent R=19.0 190.00 ft² c. N/A R= ft² d. N/A R= ft² 11. Ceiling Types(1630.0 sqft.) Insulation Area a. Under Attic (Vented) R=30.0 1630.00 ft² b. N/A R= ft² c. N/A R= ft² c. N/A R= ft² c. N/A R= ft² a. Sup: Main, Ret: Main, AH: Attic 6 302.4 b. c. 13. Cooling Systems kBtu/hr Efficiency | | Area Weighted Average SHGC: 8. Skylights Description U-Factor:(AVG) N/A SHGC(AVG): N/A 9. Floor Types Insulation | ft ² a. Central Unit 36.0 SEER:16.00 476 ft 0.371 Area N/A ft ² Area 0.00 ft ² ft ² ft ² ft ² ft ² b. Conservation features A. Central Unit 36.0 SEER:16.00 48btu/hr Efficiency 18.0 HSPF:16.00 Cap: 40 gallons EF: 0.920 b. Conservation features | | | ed Modified Loads: 54.78 al Baseline Loads: 57.32 PASS | | I hereby certify that the plans and specifications covered this calculation are in compliance with the Florida Ener Code. PREPARED BY: DATE: 11/22/21 OLYM DESIGNS OF THE PROPERTY P | specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes. | - Compliance requires certification by the air handler unit manufacturer that the air handler enclosure qualifies as certified factory-sealed in accordance with R403.3.2.1. - Default duct leakage does not require a Duct Leakage Test Report. - Compliance requires an Air Barrier and Insulation Inspection Checklist in accordance with R402.4.1.1 and this project requires a PERFORMANCE envelope leakage test report with envelope leakage no greater than 7.00 ACH50 (R402.4.1.2). | | | | | | PRO | JEC1 | - | | | | | | | | |--|----------------|---|--------------------|---|--|---------------------------|-----------------------|--|--------------------------|-----------------------|---|--------------------|----------------|----------------| | Owr
Build
Perr
Juris
Fam
New
Yea | ding Type: | EOS - 8TH AVE I
User
ALAMO INVEST:
Detached
New (From Plans | S PROPERTIES LLC | Total Sto
Worst Ca
Rotate A
Cross Ve | nedArea:
ories:
ase:
ngle:
entilation:
ouse Fan | 1
No
0
n:
Sub | 0
ourban
ourban | Lot #:
Block
PlatBo
Street
Count | /SubDivisi
ook:
t: | on:
8T
Co
NA | eet Addre
H AVE NI
Ilier
.PLES,
, 34120 | | | | | | | | | | CLIN | MATE | 1 | | | | | | | | | | sign
cation | | Tmy Site | | De:
97.5% | sign Tem
% 2.5 | | Int Design
Winter S | | Heat
Degree | | Desigi
Moisture | | ilytemp
nge | | Fl | L, Lee/Collier | | FL_SOUTHWEST_ | FLORIDA | _I 46 | 9 | 1 | 70 | 75 | 321 | | 58 | Medi | um | | | | | | | BLC | CKS | | | | | | | | | | √ Nu | mber | Name | Area | Vo | olume | | | | | | | | | | | 1 | | Block1 | 1630 | 1630 | 00 | | | | | | | | | | | | | | | | SPA | ACES | | | | | | | | | | √ Nu | mber | Name | Area | Volume | Kitchen | n Occ | upants | Bedro | ooms | Finis | hed | Coo | led H | leated | | 1 | | Main | 1630 | 16300 | Yes | | 4 | 3 | | Yes | | Υe | es | Yes | | | | | | | FLC | ORS | | T) | otal Ex | kpose | ed Are | a = 16 | 630 sq | .ft.) | | \frac{\psi}{\psi} | FloorTyp | e | Space | Exposed | IPerim | Perimet | erR-Valu | e Area | U-Facto | or Joist | R-Value | Tile | Wood | Carpet | | 1 | Slab-On-Gr | ade Edge Ins | Main | 18 | 30 | 0 | | 1630 f | t 0.304 | 4 | | 0.00 | 0.00 | 1.00 | | | | | | | RC | OOF | | | | | | | | | | \ # | Туре | | Materials | | Roof
Area | Gable
Area | Roof
Color | Rad
Barr | Solar
Absor. | SA
Tested | Emitt | Emitt
Tested | Deck
Insul. | Pitch
(deg) | | 1 | Hip | | Compositionshingle | s 17 | 766 ft² | 0 ft² | Medium | N | 0.96 | No | 0.9 | No | 0 | 22.62 | | | | | | | AT | TIC | | | | | | | | | | / # | Туре | | Ventilation | | Vent | Ratio (1 i | n) <i>A</i> | ∖rea | RBS | | IRCC | | | | | 1 | Full attic | | Vented | | | 300 | 16 | 30 ft² | N | | N | | | | | | | | | | CEI | LING | | (T | otal Ex | kpose | ed Are | a = 16 | 630 sc | .ft.) | | / # | CeilingTy | /pe | | Space | R-\ | Value | Ins. Type | Area | a U-F | actor | Framing | Frac. | Trus | s Type | | 1 | Under Attic(| Vented) | | Main | 3 | 30.0 | Batt | 1630.0 | Oft² O. | 064 | 0.11 | | W | ood/ | | | | | | | | | | WA | LLS | } | | (Total Exposed Area = 1788 sq.ft.) | | | | | | | |---|-----------------------|--|--|--|---------------------------------|--|--|-------------|---------------------------------------|---|---|--|------------------------------|--|--|--|--|--| | \/ # C | Ornt | • | acent
o | Wall Type | | Space | | Cav
R-V | rity
alue | Width
Ft Ir | | Height
Ft In | Area
sq.ft | | Sheath
R-Value | | Solar
. Absor | Below
Grade | | 12345 | N
N
S
W
E | | Garage
Exterior
Exterior
Exterior
Exterior | Frame - Woo
Conc. Blk - Ir
Conc. Blk - Ir
Conc. Blk - Ir | nt Ins
nt Ins
nt Ins | N
N
N | lain
lain
lain
lain
lain | 4
4
4 | 9.0
.1
.1
.1 | 28.0
47.0
42.0 | 4 · · · · · · · · · · · · · · · · · · · | 10.0 0
10.0 0
10.0 0
10.0 0 | 283.
473.
420. | 3 0.128
3 0.128
8 0.128 | 3 1.11
3 1.11
3 1.11 | 0.23
0
0
0
0 | 0.75
0.75
0.75
0.75
0.75 | 0 %
0 %
0 %
0 % | | DOORS (Total Exposed Area = 58 sq.ft.) | \/ # C | Ornt | | Adjacent | To DoorType | • | Space | | | Storr | ms | ı | J-Value | | Width
Ft In | | eight
In | Ar | ea | | 1 | S
N | | Garage
Exterior | | I | Mair
Mair | | | No
No | | | 0.46
0.46 | 2.0
5.0 | | 6.00
8.00 | 8
0 | | 8ft²
Oft² | | WINDOWS (Total Exposed Area = 179 sq.ft.) | | | | | | | | | | ft.) | | | | | | | | | | # 0 | | Wall
ID | Frame | Panes | NFRC | U-Factor | SHGC | Imp S | Storm | Total
Area
(ft²) | Same
Units | | n Height
(ft) | Overl
Depth
(ft) | hang
Sep.
(ft) | Interior | Shade | Screen | | 1 N 2 N 3 S 4 S 5 S 5 S 7 V 9 E 9 E 9 E 9 E 9 E 9 E 9 E 9 E 9 E 9 | N
S
S
V
V | 2
2
3
3
3
3
4
4
5
3 | Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal | Single (Clear) | Y
Y
Y
Y
Y
Y
Y | 0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30 | X | N N N N N N N N N N N N N N N N N N N | 16.2
16.2
16.2
5.1
16.2
16.2
5.1
16.2
8.0
64.0 | 1
1
1
1
1
1
1
1
1 | 3.08
3.08
3.08
2.25
3.08
3.08
2.25
3.08
6.00
8.00 | 5.25
5.25
2.25
5.25 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.3 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | No
No
No
No
No
No
No
No | ne
ne
ne
ne
ne
ne
ne | None
None
None
None
None
None
None
None | | | | | | | | | INF | ILT | RAT | ION | | | | | | | | | | √ # S | Соре |) | Ме | thod | SI | _A (| CFM50 | Е | LA | EqL | A | ACH | ACH | 50 | | Space(| (s) | | | 1 | Who | olehou | ise Prop | osed ACH(50) | 0.00 | 0044 | 1902 | 104 | 1.33 | 195.8 | 37 | 0.1460 | 7.0 |) | | All | | | | | | | | | | | | GAR | | | | | | | | | | | | # | | · | FloorArea | | Roof Area | a
 | Ex | - | | erimeter | | Av | g. Wall He | eight | Expo | sed Wa | all Insula | tion | | 1 | | | 379 ft ² | | 379 ft² | | | | 57 ft | | | | 10 ft | | | 1 | | | | \/ # | Mac | ss Typ | 9 | | ۸۰ | ea | | | icknes | c | E | rnitureFr | raction | | Space | | | | | 1 | | | lbs/sq.ft.) | | | ft² | | | 0 ft | | 1 0 | 0.30 | | | Main | | | | | <u> </u> | 201 | (O | | | | | HEAT | ING | | STF | <u></u> | 0.50 | | | ivialii | | | | | V # | Sys | tem Ty | /ре | | Subtype/S | | AHR | | Effici | | Capa
kBtu | | | thermalH | eatPump-
Volt C | | Oucts | Block | | 1 | Elec | ctric H | eat Pump | | None/Si | ngle | | | HSPF: | : 16.00 | 18 | .0 | | 0.00 | 0.00 | 0.00 s | ys#1 | 1 | | | | | HEA | ATIN | G SYS | ГЕМ(С | ontin | u ed) | | | | | | |--|--|------------------------------|-------------------------------|----------------|------------------|---------------|-------------------------------|-----------------------------|-----------------------------|----------------------|--------------|-----------------------|-----------------------------| | 1A
Electric Heat P | ump | | None/ | | | HSPF: 15 | .00 2 | 0.0 | 0.0 | 00 0.0 | 00 0.00 |) sys#1 | 1 | | COOLING SYSTEM | | | | | | | | | | | | | | | # SystemType | | Sub | otype/Spee | d | AHRI# | Efficie | ncy | Capacity
kBtu/hr | | Flow
cfm | SHR | Duct | Block | | 1 Central Unit
1A Central Unit | | | None/Sing
None/Sing | | | SEER: | | 6.0
6.0 | | 080
080 | 0.75
0.75 | sys#1
sys#1 | 1
1 | | HOT WATER SYSTEM | | | | | | | | | | | | | | | # SystemType | Subtype | | Location | | EF(UEF) | Cap | Use | SetPnt | Fixture | Flow | Pipe Ins. | Pipe | elength | | 1 Electric | None | | Garage | | 0.92 (0.92) | 40.00 ga | 60 gal | 120 deg | Stand | dard | None | | 88 | | Recirculation
System | | Control
Type | | Loop
length | Branch
length | Pump
power | DWHR | R Facilitie
Connect | | | DWHR
Eff | Othe | Credits | | 1 No | | | | NA | NA | NA | No | NA | N/ | 4 | NA | Non | е | | | | | | | DU | CTS | | | | | | | | | | R-Value Ar | ea Loc | Reteation | R-Value | e Area | LeakageT | | Air
Handler | CFM 25
TOT | CFM 25
OUT | | RLF H | HVAC #
eat Cool | | 1 Main | 6.0 302 f | t ² Main | | 6.0 | | DefaultLea | | Attic | (Default) (| Default) | | | 1 1 | | | | | | Т | EMPER | RATUF | RES | | | | | | | | Programable Thermo Cooling [] Jan Heating [X] Jan Venting [] Jan | stat: N
[] Feb
[X] Feb
[] Feb | [] Mar
[X] Mar
[X] Mar | [] Apr
[] Apr
[X] Apr | 1 []
1 [] | May [] | Jun
Jun | [X] Jul
[] Jul
[] Jul | [X] Aug
[] Aug
[] Aug | [X] Sep
[] Sep
[] Sep | [] O
[]]
[X] O | ct [X | Nov
 Nov
 Nov | [] Dec
[X] Dec
[] Dec | | Thermostat Schedu Schedule Type | ule: HERS 20 | 006 Referen
1 | ce
2 | 3 | 4 | 5 | Hor
6 | urs
7 | 8 | 9 | 10 | 11 | 12 | | Cooling (WD) | AM
PM | 78
78 | Cooling (WEH) | AM
PM | 78
78 | Heating (WD) | AM
PM | 68
68 | Heating (WEH) | AM
PM | 68
68 ## ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE INDEX* = 96 The lower the EnergyPerformance Index, the more efficient the home. 8TH AVE NE, NAPLES, FL, 34120 | New construction of | r existing | New (F | rom Plans) | 10. Wall Types(1788.3 sqft.) | Insulation Area | |--|--|----------------------------------|---|--|--| | 2. Single family or mu | Itiple family | | Detached | a. Concrete Block - Int Insul, Exter | | | 3. Number of units, if | multiple family | , | 1 | b. Frame - Wood, Adjacent
c. N/A | R=19.0 190.00 ft ²
R= ft ² | | 4. Number of Bedroon | ns | | 3 | d. N/A | $R=$ ft^2 | | 5. Is this a worst case | ? | | No | 11. Ceiling Types(1630.0 sqft.) | Insulation Area | | Conditioned floor ar
Conditioned floor ar | _ | | 1630
0 | a. Under Attic (Vented)
b. N/A
c. N/A | R=30.0 1630.00 ft ² R= ft ² R= ft ² | | 7. Windows** a. U-Factor: SHGC: b. U-Factor: | Descriptio
Sgl, U=0.6
SHGC=0.3
Sgl, U=1.1 | 60
30 | Area
115.25 ft ²
64.00 ft ² | 12. Ducts, location & insulation level a. Sup: Main, Ret: Main, AH: Attic b. c. | R ft ² | | SHGC:
c. U-Factor:
SHGC: | SHGC=0.9
N/A | | ft ² | 13. Cooling Systems a. Central Unit | kBtu/hr Efficiency
36.0 SEER:16.00 | | Area Weighted Avera
Area Weighted Avera
8. Skylights
U-Factor:(AVG) | | | 0.476 ft
0.371
Area
N/A ft ² | Heating Systems a. Electric Heat Pump | kBtu/hr Efficiency
18.0 HSPF:16.00 | | SHGC(AVG): 9. Floor Types a. Slab-On-Grade Edb. N/A c. N/A | N/A | Insulation
R= 0.0
R=
R= | Area 1630.00 ft ² ft ² | 15. Hot Water Systemsa. Electricb. Conservation features | Cap: 40 gallons
EF: 0.920 | | | | | | 16. Credits | None
None | | | | | | | | I certify that this home has complied with the Florida Energy Efficiency Code for Building Construction through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features. | Builder Signature: | Date: | |---------------------------------|------------------------------| | Address of New Home: 8TH AVE NE | City/FL Zip: NAPLES FL 34120 | *Note: This is not a Building Energy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage (EEM) incentives if you obtain a Florida Energy Rating. For information about the Florida Building Code, Energy Conservation, contact the Florida Building Commission's support staff. **Label required by Section R303.1.3 of the Florida Building Code, Energy Conservation, if not DEFAULT. ## **Residential System Sizing Calculation** #### Summary Project Title: ALAMO INVESTS PROPERTIES LLC 8TH AVE NE NAPLES, FL 34120 Project Title: EOS - 8TH AVE NE 40627080007 11/22/2021 | 1 1 1 1 10 | | D (1/ 1 | :: 1 (00 E0) Al::: 1 (4E 6:) T | 5 /14 | ` | |----------------------------------|---------------|---------------|--------------------------------------|------------------------|-------| | Location for weather data: Lee/C | follier, FL - | Defaults: L | _atitude(26.53) Altitude(15 ft.) Ter | np Range(M |) | | Humidity data: Interior RH (50% | 6) Outdoo | r wet bulb (7 | 78F) Humidity difference(58gr.) | | | | Winter design temperature(TMY3 | 99%) 43 | F | Summer design temperature(TMY | ['] 3 99%) 93 | F | | Winter setpoint | 70 | F | Summer setpoint | 75 | F | | Winter temperature difference | 27 | F | Summer temperature difference | 18 | F | | Total heating load calculation | 18653 | Btuh | Total cooling load calculation | 34302 | Btuh | | Submitted heating capacity | % of calc | Btuh | Submitted cooling capacity | % of calc | Btuh | | Total (Electric Heat Pump) | 96.5 | 18000 | Sensible (SHR = 0.75) | 103.0 | 27000 | | Heat Pump + Auxiliary(0.0kW) | 96.5 | 18000 | Latent | 111.4 | 9000 | | | | | Total (Electric Heat Pump) | 105.0 | 36000 | #### **WINTER CALCULATIONS** Winter Heating Load (for 1630 sqft) | Load component | | | Load | | |----------------|-----------------|-------|-------|------| | Window total | 179 | sqft | 3802 | Btuh | | Wall total | 1551 | sqft | 5113 | Btuh | | Door total | 58 | sqft | 718 | Btuh | | Ceiling total | 1630 | sqft | 1402 | Btuh | | Floor total | 1630 | sqft | 5735 | Btuh | | Infiltration | 63 | cfm | 1884 | Btuh | | Duct loss | | | 0 | Btuh | | Subtotal | | | 18653 | Btuh | | Ventilation | Ex:0 cfm; Sup:0 | cfm c | 0 | Btuh | | TOTAL HEAT LO | SS | | 18653 | Btuh | ## SUMMER CALCULATIONS Floors (30.7%) Summer Cooling Load (for 1630 sqft) | Load component | | | Load | | |---------------------------|------------|------|-------|------| | Window total | 179 | sqft | 4699 | Btuh | | Wall total | 1551 | sqft | 3461 | Btuh | | Door total | 58 | sqft | 771 | Btuh | | Ceiling total | 1630 | sqft | 2232 | Btuh | | Floor total | | | 0 | Btuh | | Infiltration | 48 | cfm | 942 | Btuh | | Internal gain | | | 14120 | Btuh | | Duct gain | | | 0 | Btuh | | Sens.Ventilation Ex:0 | cfm; Sup:0 | cfm | 0 | Btuh | | Blower Load | | | 0 | Btuh | | Total sensible gain | | | 26225 | Btuh | | Latent gain(ducts) | | | 0 | Btuh | | Latent gain(infiltration) | | | 1877 | Btuh | | Latent gain(ventilation) | | | 0 | Btuh | | Latent gain(internal/occu | pants/othe | r) | 6200 | Btuh | | Total latent gain | | | 8077 | Btuh | | TOTAL HEAT GAIN | | | 34302 | Btuh | | EnergyGauge® System Sizing PREPARED BY: | | |---|---| | DATE: | 1 | ## **System Sizing Calculations - Summer** Residential Load - Whole House Component Details ALAMO INVESTS PROPERTIES LLC 8TH AVE NE Project Title: EOS - 8TH AVE NE 40627080007 NAPLES, FL 34120 11/22/2021 Reference City: Lee/Collier, FL (Defaults) Humidity difference: 58gr. Temperature Difference: 18.0F(TMY3 99%) Summer Setpoint: 75 °F (Required Manual J default) #### **Component Loads for Whole House** | 2 | | Type* | | Overl | hang | Wind | ow Area | (sqft) | Н | ITM | Load | |
---|--------------|---------------------------------------|------------|----------|--------|---------|----------|-----------|----------|----------|-------|-------| | 2 | Window | Panes SHGC U InSh | IS Ornt | Len | Hgt | Gross | Shaded I | Unshaded | Shaded | Unshaded | | | | 3 | | | No N | 0.0ft. | | 16.2 | 0.0 | 16.2 | 17 | 17 | 280 | Btuh | | 4 | | , | | | | | | | | | | Btuh | | 1 NFRC 0.30, 0.60 No No S 0.0ft, 0.0ft, 16.2 17 18 299 | | | | | | | | | | _ | | Btuh | | 6 | | , | | | | | | | | | | Btuh | | 1 NFRC 0.30, 0.60 No No W 0.0ft, 0.0ft, 0.0ft, 16.2 0.0 16.2 17 40 647 18.7 18.7 18.7 18.0 19.0 18.0 19.0 18.0 19.0 18.0 17 40 320 18. | | , | | | | | | | | _ | | Btuh | | 1 NFRC 0.30, 0.60 No | | , | - | | | | | | | _ | | Btuh | | 9 | | | | | | | | | | | | Btuh | | 1 | - | , | | | | - | | - | | - | _ | Btuh | | Window Total | | | | | | | | | | - | | Btuh | | Walls | 10 | · · | NO 5 | 1.311. | υ.υπ. | | | 0.0 | 31 | 33 | | | | Trame - Wood - Adj | \A/ - II - | | | \ | - D \ | | | ((t) | | 1.1784 | | Diun | | Trame - Wood - Adj | waiis | Туре | U | -value | | | Area(| (sqft) | | HIM | Load | | | ConcreteBlk,Hollow - Ext | | | | | | | | | | | | | | 3 | | | | | | | | | | | | Btuh | | ConcreteBlk,Hollow - Ext | | · · · · · · · · · · · · · · · · · · · | | | | | | - | | | - | Btuh | | 5 ConcreteBlk,Hollow - Ext Wall Total 0.13 4.1/1.1 412.8 2.3 967 3461 E Doors Type Area (sqft) HTM Load 1 Wood - Garage 17.8 13.3 237 2 Insulated - Exterior Door Total 40.0 13.3 534 Door Total 58 (sqft) 771 E Ceilings Type/Color/Surface U-Value R-Value Area(sqft) HTM Load 1 Vented Attic/Light/Shingle Ceiling Total 0.032 30.0/0.0 1630.0 1.37 2232 Floors Type R-Value Size HTM Load 1 Slab On Grade 0.0 1630 (sqft) 0.0 0 Floor Total 1630.0 (sqft) 0.0 0 0 0 0 Envelope Subtotal: 11163 E Infiltration Type Average ACH Volume(cuft) Wall Ratio CFM= Load Natural 0.18 16300 1 47.6 942 | | , | | | | | | | | | | Btuh | | Wall Total | | | | | | | | | | | | Btuh | | Doors Type | 5 | | | 0.13 | 4.1/1 | 1.1 | | | | 2.3 | | | | 1 | | | | | | | | | | | | Btuh | | 2 | Doors | Type | | | | | Area | (sqft) | | НТМ | Load | | | Door Total | 1 | Wood - Garage | | | | | | | | 13.3 | 237 | Btuh | | Ceilings Type/Color/Surface U-Value R-Value Area(sqft) HTM Load 1 Vented Attic/Light/Shingle Ceiling Total 0.032 30.0/0.0 1630.0 1.37 2232 Encored (Sqft) 2232 Encored (Sqft) 2232 Encored (Sqft) 2232 Encored (Sqft) Encored (Sqft) Load 1.37 2232 Encored (Sqft) 2232 Encored (Sqft) Encored (Sqft) Load 0.0 <td< th=""><th>2</th><th>Insulated - Exterior</th><th></th><th></th><th></th><th></th><th>40</th><th>.0</th><th></th><th>13.3</th><th>534</th><th>Btuh</th></td<> | 2 | Insulated - Exterior | | | | | 40 | .0 | | 13.3 | 534 | Btuh | | Vented Attic/Light/Shingle Ceiling Total 1630.0 1630.0 1.37 2232 Eiling Total 1630 (sqft) 1630 (ft-perimeter) 0.0 0 0 0 0 0 0 0 0 | | Door Total | | | | | 5 | 8 (sqft) | | | 771 | Btuh | | Ceiling Total | Ceilings | Type/Color/Surface | U | -Value | ; | R-Value | Area(| (sqft) | | HTM | Load | | | Ceiling Total | 1 | Vented Attic/Light/Shingle | | 0.032 | | | | | | 1.37 | 2232 | Btuh | | Floors Type R-Value Size HTM Load 1 Slab On Grade
Floor Total 0.0 1630 (ft-perimeter) 0.0 0 Envelope Subtotal: 11163 E Infiltration Type
Natural Average ACH
Volume(cuft) Wall Ratio
0.18 CFM=
47.6 Load
942 Internal
gain Occupants
4 Btuh/occupant
4 Appliance
13200 Load
14120 Sensible Envelope Load: 26225 E | | | | | | | | | | | | | | 1 Slab On Grade Floor Total 0.0 1630 (ft-perimeter) 0.0 0 Envelope Subtotal: 11163 E Infiltration Natural Type Natural Average ACH Volume(cuft) Wall Ratio CFM= Volume(cuft) Wall Ratio Policy | Floors | | | | R-V | /alue | | | | HTM | | | | Floor Total | | | | | | | | | neter) | | | Btuh | | Infiltration Type Average ACH Volume(cuft) Wall Ratio CFM= Load Natural 0.18 16300 1 47.6 942 Internal gain 4 X 230 + 13200 14120 Sensible Envelope Load: 26225 E | • | | | | | 0.0 | | ` . | ilctci) | 0.0 | | | | InfiltrationType
NaturalAverage ACH
0.18Volume(cuft) Wall Ratio
16300
1CFM=
47.6Load
942Internal
gainOccupants
4Btuh/occupant
X 230
Sensible Envelope Load:Load
13200 | | rioui iolai | | | | | 1030. | u (sqit) | | | U | Diuii | | InfiltrationType
NaturalAverage ACH
0.18Volume(cuft) Wall Ratio
16300
1CFM=
47.6Load
942Internal
gainOccupants
4Btuh/occupant
X 230
4Appliance
13200Load
14120Sensible Envelope Load:26225 Envelope | | | | | | | Er | nvelope | Subtota | ıl: | 11163 | Btuh | | Natural 0.18 16300 1 47.6 942 | | | | | | | | • | | | ' | | | Natural 0.18 16300 1 47.6 942 | Infiltration | Type | Avei | age A | CH | Volur | me(cuft) |) Wall R | atio | CFM= | Load | | | Internal gain Occupants Btuh/occupant Appliance Load X 230 + 13200 14120 Sensible Envelope Load: 26225 E | | Natural | | _ | 0.18 | | 16300 | 1 | | 47.6 | 942 | Btuh | | gain 4 X 230 + 13200 14120 Sensible Envelope Load: 26225 E | Internal | | | | | | | | - | | | | | Sensible Envelope Load: 26225 E | | | | 9 000.1 | | | | • | • | | | Rtuh | | | gaiii | | | | | | | | | | | | | Duct load Averagesealed, Supply(R6.0-Cond), Return(R6.0-Condi) (DGM of 0.000) | | | | | | | Se | ensible l | Envelop | e Load: | 26225 | Btuh | | | Duct load | Averagesealed, Supply(R6 | 0-Cond), F | Return(R | 6.0-Co | ndi) | | (DGI | M of 0.0 | 00) | 0 | Btuh | | Sensible Load All Zones 26225 B | | | | | | | | | oad All | Zones | 26225 | Btuh | ### **Manual J Summer Calculations** Residential Load - Component Details (continued) ALAMO INVESTS PROPERTIES LLC 8TH AVE NE NAPLES, FL 34120 Project Title: EOS - 8TH AVE NE 40627080007 Climate:FL_SOUTHWEST_FLORIDA_I 11/22/2021 #### WHOLE HOUSE TOTALS | | Sensible Envelope Load All Zones | 26225 | Btuh | |--------------------|---|-------|------| | | Sensible Duct Load | 0 | Btuh | | | Total Sensible Zone Loads | 26225 | Btuh | | | Sensible ventilation (Ex:0 cfm; Sup:0 cfm) | 0 | Btuh | | | Blower | 0 | Btuh | | Whole House | Total sensible gain | 26225 | Btuh | | Totals for Cooling | Latent infiltration gain (for 58 gr. humidity difference) | 1877 | Btuh | | | Latent ventilation gain | 0 | Btuh | | | Latent duct gain | 0 | Btuh | | | Latent occupant gain (4.0 people @ 200 Btuh per person) | 800 | Btuh | | | Latent other gain | 5400 | Btuh | | | Latent
total gain | 8077 | Btuh | | | TOTAL GAIN | 34302 | Btuh | #### **EQUIPMENT** | 1. Central Unit | Multiple #Multiple | 36000 Btuh | |-----------------|--------------------|------------| |-----------------|--------------------|------------| *Key: Window types (Panes - Number and type of panes of glass) (SHGC - Shading coefficient of glass as SHGC numerical value) (U - Window U-Factor) (InSh - Interior shading device: none(No), Blinds(B), Draperies(D) or Roller Shades(R)) - For Blinds: Assume medium color, half closed For Draperies: Assume medium weave, half closed For Roller shades: Assume translucent, half closed (IS - Insect screen: none(N), Full(F) or Half(1/2)) (Ornt - compass orientation) Version 8 ## **System Sizing Calculations - Winter** ### Residential Load - Whole House Component Details ALAMO INVESTS PROPERTIES LLC 8TH AVE NE NAPLES, FL 34120 Project Title: EOS - 8TH AVE NE 40627080007 Building Type: User 11/22/2021 Reference City: Lee/Collier, FL (Defaults) Winter Temperature Difference: 27.0 °F (TMY3 99%) Winter Setpoint: 70 °F (Required Manual J default) #### **Component Loads for Whole House** | Window | Panes/Type F | rame U | Orientation | Area(sqft) X | HTM= | Load | |--------------|-----------------------|--------------|------------------------|-----------------|-------------|------------| | 1 | • | Metal 0.60 | N | 16.2 | 16.2 | 262 Btuh | | 2 | 1, NFRC 0.30 M | 1etal 0.60 | N | 16.2 | 16.2 | 262 Btuh | | 3 | 1, NFRC 0.30 M | 1etal 0.60 | S | 16.2 | 16.2 | 262 Btuh | | 4 | 1, NFRC 0.30 M | 1etal 0.60 | S | 5.1 | 16.2 | 82 Btuh | | 5 | 1, NFRC 0.30 M | 1etal 0.60 | S | 16.2 | 16.2 | 262 Btuh | | 6 | 1, NFRC 0.30 M | 1etal 0.60 | S | 16.2 | 16.2 | 262 Btuh | | 7 | 1, NFRC 0.30 M | 1etal 0.60 | W | 5.1 | 16.2 | 82 Btuh | | 8 | 1, NFRC 0.30 M | 1etal 0.60 | W | 16.2 | 16.2 | 262 Btuh | | 9 | 1, NFRC 0.30 M | 1etal 0.60 | Е | 8.0 | 16.2 | 130 Btuh | | 10 | 1, NFRC 0.50 M | /letal 1.12 | S | 64.0 | 30.2 | 1935 Btuh | | | Window Total | | | 179.3(sqft) | | 3802 Btuh | | Walls | Type Ori | nt. Ueff. | R-Value | Area X | HTM= | Load | | | | | (Cav/Sh) | | | | | 1 | Frame - Wood - A | | 19.0/0.9 | 172 | 2.01 | 345 Btuh | | 2 | Conc Blk,Hollow - E | | 4.1/1.1 | 211 | 3.46 | 729 Btuh | | 3 | Conc Blk,Hollow - E | , | 4.1/1.1 | 356 | 3.46 | 1230 Btuh | | 4 | Conc Blk,Hollow - E | | 4.1/1.1 | 400 | 3.46 | 1381 Btuh | | 5 | Conc Blk,Hollow - E | xt (0.128) | 4.1/1.1 | 413 | 3.46 | 1427 Btuh | | | Wall Total | | | 1551(sqft) | | 5113 Btuh | | Doors | 71 | Storm Ueff. | | Area X | HTM= | Load | | 1 | 1 0 7 | n (0.460) | | 18 | 12.4 | 221 Btuh | | 2 | Insulated - Exterior, | n (0.460) | | 40 | 12.4 | 497 Btuh | | | Door Total | | | 58(sqft) | | 718Btuh | | Ceilings | Type/Color/Surface | Ueff. | R-Value | Area X | HTM= | Load | | 1 | Vented Attic/L/Shing | (0.032) | 30.0/0.0 | 1630 | 0.9 | 1402 Btuh | | | Ceiling Total | | | 1630(sqft) | | 1402Btuh | | Floors | Туре | Ueff. | R-Value | Size X | HTM= | Load | | 1 | Slab On Grade | (1.180) | 0.0 | 180.0 ft(pe | rim.) 31.9 | 5735 Btuh | | | Floor Total | | | 1630 sqft | | 5735 Btuh | | | | | | Envelope Subto | otal: | 16769 Btuh | | Infiltration | Type | Wholehouse A | CH Values - | (cuft) Wall Rat | io CEM | | | inflitration | Type V
Natural | | .CH Volume
.23 1630 | , | | 1884 Btuh | | Duct load | Average sealed, R6. | 0, Supply(Co | n), Return(C | on) (DLM | I of 0.000) | 0 Btuh | | | | -, | | - , (= 210 | | | | All Zones | | | Sensible | Subtotal All 2 | Zones | 18653 Btuh | ## **Manual J Winter Calculations** ## Residential Load - Component Details (continued) S PROPERTIES LLC Project Title: ALAMO INVESTS PROPERTIES LLC 8TH AVE NE NAPLES, FL 34120 EOS - 8TH AVE NE 40627080007 Building Type: User 11/22/2021 #### WHOLE HOUSE TOTALS | Totals for Heating Subtotal Sensible Heat Loss Ventilation Sens. Heat Loss Total Heat Loss | 18653 Btuh
0 cfm; Sup:0 cfm) 0 Btuh
18653 Btuh | |---|--| |---|--| #### **EQUIPMENT** | Electric Heat Pump | Multiple #Multiple | 18000 Btuh | |--------------------|--------------------|------------| | | | 1 | Key: Window types - NFRC (Requires U-Factor and Shading coefficient(SHGC) of glass as numerical values) or - Glass as 'Clear' or 'Tint' (Uses U-Factor and SHGC defaults) U - (Window U-Factor) HTM - (ManualJ Heat Transfer Multiplier) Version 8 # Envelope Leakage Test Report (Blower Door Test) Residential Prescriptive, Performance or ERI Method Compliance 2020 Florida Building Code, Energy Conservation, 7th Edition | Jurisdiction: | Permit #: | | | | |--|--|--|--|--| | Job Information | | | | | | Builder: Community: | Lot: NA | | | | | Address: 8TH AVE NE | | | | | | City: NAPLES State | e: FL Zip: 34120 | | | | | Air Leakage Test Results Passing results must meet either the Performance, Prescriptive, or ERI Method | | | | | | PRESCRIPTIVE METHOD-The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding 7 air changes per hour at a pressure of 0.2 inch w.g. (50 Pascals) in Climate Zones 1 and 2. | | | | | | PERFORMANCE or ERI METHOD-The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding the selected ACH(50) value, as shown on Form R405-2020 (Performance) or R406-2020 (ERI), section labeled as infiltration, sub-section ACH50. ACH(50) specified on Form R405-2020-Energy Calc (Performance) or R406-2020 (ERI): 7.000 | | | | | | CFM(50) x 60 ÷ 16300 = ACH(50) PASS When ACH(50) is less than 3, Mechanical Ventilation must be verified by building department. | Method for calculating building volume: Retrieved from architectural plans Code software calculated Field measured and calculated | | | | | R402.4.1.2 Testing. Testing shall be conducted in accordance with ANSI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 Pascals). Testing shall be conducted by either individuals as defined in Section 553.993(5) or (7), Florida Statues.or individuals licensed as set forth in Section 489.105(3)(f), (g), or (i) or an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope. During testing: 1. Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures. 2. Dampers including exhaust, intake, makeup air, back draft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures. 3. Interior doors, if installed at the time of the test, shall be open. 4. Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed. 5. Heating and cooling systems, if installed at the time of the test, shall be fully open. | | | | | | Testing Company | | | | | | Company Name: I hereby verify that the above Air Leakage results are in accorda Energy Conservation requirements according to the compliance | nce with the 2020 7th Edition Florida Building Code | | | | | Signature of Tester: | Date of Test: | | | | | Printed Name of Tester: | | | | | | License/Certification #: | Issuing Authority: | | | |