

Florida Engineering LLC

4161 Tamiami Trail, Suite 101 Port Charlotte, FL 33952-9204 www.flengineeringllc.com Phone: (941) 391-5980

License Number #30782, #60102

Project No.	: 2129275-P
Project Name	: Oliveria Residence
Project Address	: 4020 62nd Ave NE Naples, Fl

SIMPLIFIED TOTAL DYNAMIC HEAD (TDH) CALCULATIONS WORKSHEET

DETERMINE MAXIMUM SYSTEM FLOW RATE :

- 1. Calculate Pool Volume:Surface area $A := 14 \ ft \cdot 30 \ ft = 420 \ ft^2$ Average depth $d := 5.25 \ ft$ $V := A \cdot d = 16494.545 \ gal$ 2. Determine preferred turnover time in hours : $t := 8 \ hr = 480 \ min$ 3. Determine Max. Flow Rate: $Q_1 := \frac{V}{t} = 34.364 \ gpm$
- 4. Spa jets : N/A $Q_2 \coloneqq 0 \ gpm$

(For single pump pool / spa combo, use the higher of No. 3 or No. 4 in the following calculations for the pool and spa.

Calculated flow rate	$Q \coloneqq \operatorname{Round} \left(\max \left(Q_1, Q_2 \right), 1 gpm \right) + 1 gpm = 35 gpm$
Allowable flow rate	Q_{min} := 36 gpm
Actual flow rate	$Q \coloneqq \max \left(Q, Q_{min} \right) = 36 \ gpm$
Actual turnover time	$t := \frac{V}{Q} = 7.636 \ hr$

RECOMMENDED MINIMUM PIPE SIZE (2020 FBC, 7TH EDITION) :

Branch Piping to be :	<u>3"</u>	to keep velocity @ 6fps max at	Q=36 gpm
Trunk Piping to be :	<u>2.5"</u>	to keep velocity @ 8fps max at	Q=36 gpm
Return Piping to be :	<u>2"</u>	to keep velocity @ 10fps max at	Q=36 gpm

FLOW AND FRICTION LOSSES PER FOOT - SCH. 40 PVC PIPE						
Velocity						
Pipe size (in) 6 f		t/s	8 ft/s		10 ft/s	
	gpm	ft	gpm	ft	gpm	ft
1	16	0.14	21	0.23	26	0.35
1 1/2	37	0.08	50	0.14	62	0.21
2	62	0.06	82	0.1	103	0.16
2 1/2	88	0.05	117	0.09	146	0.13
3	138	0.04	181	0.07	227	0.1
4	234	0.03	313	0.05	392	0.07
5	534	0.02	712	0.03	890	0.05

SIMPLIFIED TDH :

1. Friction loss (in suction pi	pe) in	<u>2.5"</u>	pipe per ft at	Q=36 gpm	$f_{suction}\!\coloneqq\!0.09$
2. Friction loss (in return pip	e) in	<u>2"</u>	pipe per ft at	Q=36 gpm	$f_{return} \coloneqq 0.16$
3. Length of suction pipe		L_{ε}	$suction \coloneqq 50 \; ft$		
TDH in suction pipe	$TDH_{suction}$	$m := L_{su}$	$ction \cdot f_{suction} = 4$.5 ft	
4. Length of return pipe		L_{i}	$return \coloneqq 80 \; ft$		
TDH in return pipe	TDH_{return}	$h := L_{ret}$	$_{urn} \cdot f_{return} = 12.$.8 ft	
5. TDH in Piping	TDH_{piping}	=TD	$H_{suction} + TDH_{r}$	$_{return} = 17.3 \; ft$	
6. Filter loss in TDH	TDH_{filter} :	= 16.6	ft		
7. Heater loss in TDH	TDH_{heater}	.=10.0) f t		
8. All other losses	TDH_{other} :	= 16.0	ft	head losses in fit	tings, etc
9. Total simplidied TDH	$TDH \coloneqq T$	DH_{pipin}	$_{ng}$ + TDH_{filter} +	$TDH_{heater} + TDH_{heater}$	$H_{other} = 59.9 \ ft$

Pump Selection using pump curve for simplified TDH and System Flow Rate :

Manufacturer : Pentair	Model : Superflo VS	Size / HP = 1.5
<u>Main Drain Cover :</u>		
Manufacturer : Paramount	Model : SDX2	
Max. cover flow rate = 188 gpm	Cover Replacemer	nt Date = 7 years

MAIN DRAIN PLUMBING METHOD OPTIONS :

<u>Pool</u>	A. Dual outlets in parallel one pump
	B. Dual outlets in parallel to dual pumps in parallel
	C. Parallel dual outlets to two pumps
	D. Dual outlets on different planes
	E. Three or more outlets in parallel symmetric piping
	F. Three or more outlets in parallel electrically tapped piping
	G. Three or more outlets in parallel looped piping
	H. Single unblockable channel outlets to single pump (channel drain @ 316 gpm max. flow rate)

I. Single unblockable channel outlets to two pumps (channel drain @ 217 w/2 ports & 278 gpm w/3 ports (see note 4)

Notes :

1. In flow suction outlets cover/grate must conform to most recent edition of ASME/ANSI A112.19.8 and be embossed with that edition approval.

2. Pump and Filter make, model and location cannot change without submitting a revised plan TDH worksheet.

3. See manufacturer's specifications for pump curve of specified pump.

4. Contractor to choose main drain plumbing method from the options (A to I) listed above.